
RDMA-Based Deterministic Communication
Architecture for Autonomous Driving

Hazem Abaza∗†, Abhinaba Habishyashi†, Debayan Roy†, Andrea Bastoni§,
Zain A. H. Hammadeh‡, Shiqing Fan†, Selma Saidi∗, and Sergey Tverdyshev†

{Technische Universität Dortmund†, Huawei Munich Research Center∗,
Technische Universität München§, German Aerospace Center‡}, Germany

{hazem.abaza, selma.saidi}@tu-dortmund.de, abhinaba.habishyashi@mailbox.tu-dresden.de,
{debayan.roy6, shiqing.fan, sergey.tverdyshev}@huawei.com, andrea.bastoni@tum.de, zain.hajhammadeh@dlr.de

Abstract—Autonomous driving is a big challenge for next-
generation vehicles and requires multiple computationally-
intensive deep neural networks (DNNs) to be implemented on
distributed automotive platforms. Distributed software—enabling
autonomous functionalities—has strict timing requirements, e.g.,
low and deterministic end-to-end latency. Such timings rely on
the communication technologies used in the automotive platform,
as much on the computation performance of CPUs, GPUs, TPUs,
and FPGAs. Hence, we advocate the use of Remote Direct
Memory Access (RDMA) technology—typically used in data
centers—in automotive platforms. As shown by our experiments
with real hardware, Soft-RoCE (software implementation of
RDMA) offers low latency communication because of minimal
CPU involvement and reduced memory copies. Simultaneously,
we show that the native implementation of RDMA does not
support determinism, i.e., there is a high variation in com-
munication delays in the presence of interfering data packets.
To mitigate this issue, we propose a multi-layer communication
stack comprising a deterministic scheduler on top of the Soft-
RoCE layer. Further, we have developed a C++ library that offers
easy-to-use communication interfaces for distributed applications
while implementing the proposed architecture. Experiments show
that our library (i) reduces the end-to-end latency of distributed
object detection by nearly 9% while having an implementation
overhead of less than 1.5% and (ii) minimizes the effects of other
data traffic on the delay in high-priority communication.

I. INTRODUCTION

Enabling increasingly more autonomous driving (AD) or
advanced driver assistance system (ADAS) features in next-
generation vehicles is one of the key goals of the automotive
industry for the upcoming years. AD/ADAS applications heav-
ily rely on deep neural networks (DNNs), e.g., for planning
and control, environment perception, and sensor fusion. These
DNNs are computationally expensive and typically require
customized hardware accelerators for faster processing, which
is necessary for AD/ADAS applications. Typically, an end-
to-end AD/ADAS application starts with data acquisition
from sensors, e.g., cameras and Lidars, and goes all the
way to steering, brake, and speed control actuators. In such
an application, data flows across multiple DNNs deployed
on different accelerators which may be distributed in space.
AD/ADAS applications have strict timing requirements, e.g.,
end-to-end latency cannot be more than the typical human
reaction time which is around 390 – 600 ms (according

Andrea Bastoni was supported by the Chair for Cyber-Physical Systems in
Production Engineering at TUM and the Alexander von Humboldt Foundation.

computation

GPU GPU-RAMNIC-2 CPUMM

results received

receive results

get results
copy results

trigger post-processing

write results

receiving

SoC-3

CPU

SoC-1

ISP NIC-1

CPU TPU NIC-2

NIC-3

M
an

e
u

ver
C

o
n

tro
l

CPUGPU

(a)

MM ISP-RAM NIC-1CPU ISP

computation

write results

SoC-1

copy results
get results

sending

(b)

SoC-2

SoC-3

trigger sending the results
LI

D
A

R
C

A
M

Fig. 1: (a) Platform architecture of an example ADAS appli-
cation. (b) Sequence diagram showing data transfer between
accelerators in different SoCs.

to a MIT study [1]). While there is a lot of emphasis on
accelerating the computation in DNNs in the best possible way
using specially-designed hardware, the communication delays
between accelerators also play a significant role in determining
the final end-to-end latency of the application. Additionally,
the amount of data to be transferred between these accelerators
can easily exceed tens of megabytes, considering that very
precise information about the three-dimensional environment
is often contained in such data [2]. To make things worse, the
communication network may be shared among multiple data-
flow transfers, leading to interference and contention. In this
context, this paper focuses on communication technologies to
meet the low latency and deterministic timing requirement of
AD/ADAS applications.

Data flow in current automotive platforms: Figure 1a
shows an example ADAS application for pedestrian detection,
inspired from [3]. It uses a Lidar point cloud data stream
for occupancy grid generation. The camera frames are used
for object classification, e.g., to distinguish a pedestrian from

MM ISP-RAM NIC-1CPU ISP

computation

write results

trigger sending the results sending

computation

GPU GPU-RAMNIC-2 CPUMM

results received

receive results

trigger post-processing

write results

receiving

SoC-1

SoC-3

Fig. 2: Sequence diagram showing RDMA-supported data
transfer between accelerators in different SoCs

other objects. Here, the camera data is processed on SoC-
1 using an Image Signal Processor (ISP), while the point
cloud data from Lidar is processed in a Tensor Processing
Unit (TPU) on SoC-2. The planning and control decisions are
then taken on SoC-3 with the aid of a Graphics Processing
Unit (GPU). Hence, the data produced by ISP and TPU,
respectively, have to be sent to the GPU in SoC-3. There
are two major factors that increase the latency of such data
communication between different SoCs [4]: (i) Network access
requests from an accelerator to the network interface card
(NIC) are performed via the CPU on the same SoC as shown
by the sequence diagram in Figure 1b. Processing of such
requests consumes millions of CPU cycles for megabytes
of data transfer. Also, other workloads running on the CPU
can interfere with such requests potentially causing additional
delays in the data transfer. (ii) Transferring data between
accelerators via CPUs involve unnecessary memory copies as
illustrated in Figure 1b, which again delay the communication.

Proposed data flow for AD/ADAS applications: To improve
the inter-SoC communication latency, CPU involvement and
memory copies need to be reduced as much as possible. Re-
mote Direct Memory Access (RDMA) [5] is a technology that
can enable direct access of the memory in one SoC (e.g., ISP’s
RAM) by a processing unit in another SoC (e.g., GPU in SoC-
3). RDMA is normally implemented at hardware level (e.g.,
integrated into a NIC) with limited extension possibilities.
Instead, in this paper, we focus on Soft-RoCE, a software
implementation of RDMA over a converged Ethernet (RoCE)
network [6]. Soft-RoCE is compatible with any Ethernet NIC
since it does not use hardware acceleration. Hence, it allows
RDMA technology to be integrated in a scalable, portable,
and hardware-independent manner. With Soft-RoCE, the CPU
is able to execute other workloads, while, on the same SoC,
data is being read by a remote accelerator. Also, note that
it significantly reduces memory copies. This paper advocates
the use of RDMA technology for automotive applications, in
particular, data-intensive AD/ADAS applications, because it
reduces the latency of transmitting a large amount of data be-
tween distributed SoCs compared to communication protocols
like Transmission Control Protocol (TCP) [7]. Figure 2 depicts

the updated sequence diagram for inter-SoC data transfer in
the pedestrian detection application (from Figure 1). Data
produced by the ISP on SoC-1 (or TPU on SoC-2) is directly
read by the GPU on SoC-3 with a minimal involvement of the
CPU on SoC-1 (or the CPU on SoC-2).
Shortcomings of Soft-RoCE for AD/ADAS applications: As
shown in Section IV, our experiments highlight shortcomings
of the native implementation of Soft-RoCE when used by
distributed applications with firm real-time requirements (i.e.,
where a deadline miss will result in performance degrada-
tion). The experiments show nondeterministic timing behav-
iors when multiple data transfers are performed simultaneously
using Soft-RoCE between two SoCs. Specifically: (i) When
simultaneous data transfers have the same quality-of-service
(QoS) requirements, e.g., static priorities, we have observed
that the network bandwidth is shared among such flows
arbitrarily, which is not desirable. (ii) There is no notion of
priority in Soft-RoCE, i.e., a latency-sensitive data transfer
cannot be prioritized over interfering best-effort data packets.
Proposed communication stack: We propose a communi-
cation architecture to enable deterministic timing behavior in
distributed applications that use Soft-RoCE for communica-
tion. We introduce a Flow Control layer that manages the calls
to the Soft-RoCE layer for sending data. We can implement
any scheduling mechanism in this layer with support for
different QoS metrics, e.g., data freshness, static priority,
and deadline. Note that this architecture does not modify
the native implementation of Soft-RoCE. Further, we have
developed a communication stack implementing the afore-
mentioned architecture. We have added support for priority-
based communication with limited preemption and, hence, it
can achieve a lower worst-case and average latency for high-
priority data, which is crucial for AD/ADAS applications.
Also, the stack hides low-level RDMA implementation de-
tails and enables to develop applications using easy-to-use
Application Programming Interfaces (APIs) for initialization,
handshaking, sending and receiving.
Contributions: Our main contributions are as follows:

• We experimentally show that (i) RDMA can be used to
reduce the end-to-end latency of AD/ADAS applications,
but that (ii) there are drawbacks when using it for time-
sensitive applications.

• We propose a multi-layer communication architecture
based on RDMA for deterministic and low-latency data
transmission over distributed heterogeneous platforms.

• We implement a lightweight communication stack based
on our proposed architecture that provides simple inter-
faces to be used by distributed applications.

• As a testing use-case, we develop a real distributed
AD/ADAS application comprising a YOLO-enabled ob-
ject detection [8]. Our experiments show that our com-
munication stack (i) reduces the end-to-end latency of the
application by nearly 9% and (ii) improves determinism.

Paper organization: In Section II, we provide background
on RDMA and show initial results that motivate our work. In

User
Space

Kernel
Space

buffer Application

NIC

Sender SoC

RDMA NIC DRIVER

buffer

(b) RDMA-based stack

buffer Application

NIC

Sender SoC

Sockets

buffer

Transport Layer
(TCP/UDP)

NIC Driver

buffer

buffer

(a) Commonly-used stack

Fig. 3: CPU involvement and memory copies in inter-SoC data
transfer with commonly-used stack and RDMA-based stack.

buffer buffer
Application ApplicationUser

Space

QP

RDMA
NIC

Sender SoC Receiver SoC

1

buffer buffer
WQE

SQ RQ CQ

WQE

CQ RQ SQ

CQECQE

RDMA EngineRDMA Engine

1

2

3

4

5

6

7

8

9

11

AKK

10

Fig. 4: Different components in an RDMA connection.

Section III, we present our proposed communication stack for
low latency and deterministic communication. We describe our
experiments and analyze the results in Section IV. Section V
discusses the related works. Concluding remarks are provided
in Section VI.

II. REMOTE DIRECT MEMORY ACCESS (RDMA)

As mentioned in Section I, RDMA can reduce communica-
tion latency for distributed software applications implemented
over multiple heterogeneous SoCs. Figure 3 illustrates the
main reasons for reduced latency by comparing RDMA against
commonly-used communication stacks involving TCP/UDP. In
Figure 3a, we see that multiple interventions of the operating
system in the CPU are necessary to transfer data through dif-
ferent layers of the conventional communication stack. Also,
in the process, data is copied in the buffers of different layers
(e.g., in sockets and transport layer) using system calls (e.g.,
memcpy()). Conversely, Figure 3b shows that RDMA sending
operation (same will be on the receiving side) bypasses the
kernel almost entirely and efficiently transfers the data between
the application buffer and the RDMA-supported NIC [9]. Note
that this transfer does not involve any system call and is
accomplished using direct memory access (DMA) channels.
Therefore, we can say that RDMA allows direct access to
the application memory (i.e., without involving the operating
system and the CPUs on both sending and receiving sides) by
remote devices connected in the same network.

A. Communication using an RDMA connection

Figure 4 shows the different components in an RDMA
connection and how communication is carried out using
them. RDMA communication typically requires a NIC that
implements RDMA engine, also called Host Channel Adapter
(HCA). In particular, HCA includes all the necessary logic
to implement the RDMA protocol. The HCA is placed on a
Peripheral Component Interconnect express (PCIe) slot on the

SoC and, hence, it can use DMA. To establish an RDMA
connection between two SoCs, it is necessary to first reserve
and map (or pin) memory buffers on the sender and receiver
sides and inform the kernel that the registered memory will be
used for RDMA communication 1 . During the initialization
of an RDMA connection, HCA registers are mapped on the
memory using which application can directly invoke RDMA
transfers, i.e., a fast path is created between the application and
the HCA bypassing the kernel. That is, a pair of work queues,
called a Queue Pair (QP), are generated for communication
scheduling on the HCAs at both sending and receiving sides.
A QP consists of a Send Queue (SQ) and a Receive Queue
(RQ). Besides the QP, a Completion Queue (CQ) is generated
to track the completion of a scheduling instruction, also called
a Work Queue Element (WQE), residing on either of the work
queues. The primary content of a WQE is a pointer to the
target buffer. In SQ, a WQE contains a pointer to the data that
needs to be sent, while in RQ, the pointer in a WQE addresses
the buffer where the incoming data has to be placed.

When an application initiates an RDMA send operation, a
WQE is created and placed on the SQ in the HCA 2 . The
HCA polls the QP and, hence, gets the WQE 3 . Once the
HCA gets a WQE, it processes the WQE and fetches the data
from the memory region specified in the WQE to the HCA
buffer using DMA 4 . The HCA then creates and sends a
data packet comprising the data, the SoC address, the RDMA
connection identifier, among other information 5 .

Simultaneously, at the receiving side, the application creates
and places a WQE on the RQ in the HCA 6 . Now, when the
receiver HCA receives a data packet and identifies the RDMA
connection, it checks the corresponding RQ for a WQE 7 .
If a WQE is available, the HCA puts the data in the memory
region specified in the WQE using DMA, otherwise, it rejects
the packet 8 . If the data transfer is completed successfully,
the HCA will put a completion queue element (CQE) on the
CQ 9 . The application polls the CQ to check if the data is

received so that it can continue processing the data 10 .
On successful completion, the receiver HCA also sends

an acknowledgement to the sender HCA. Once the sender
HCA receives the acknowledgement, it also puts a CQE on
the CQ at the sending side. As the application polls the CQ
also at the sender side, it gets notified that the data is sent
successfully 11 .

B. RDMA over Converged Ethernet (RoCE)
RDMA semantics of InfiniBand was adapted to run over

Ethernet and the corresponding specification (RoCE version 1
or RoCE v1) was released by InfiniBand Trade Association
(IBTA) in April 2010 [10]. RoCE v1 uses standard Ethernet-
based services at the data link layer. RoCE v1 uses Layer 2
(L2) information and supports packet routing only within
an L2 subnet. Later, in 2014, IBTA revised RoCE v1 and
released RoCE version 2 (RoCE v2) that supports routing
of data packets on the network layer [11]. Packet routing
across different sub-networks is possible because RoCE v2

1K 2K 8K 16K 32K 64K
0

100

200

300

400

500

600

700

size [kbyte]

L
at

en
cy

[u
s]

Standrd Soft-RoCE
TCP

(a) smaller data sizes

1M 4M 8M 16M 32M
0

100

200

300

400

size [Mbyte]

L
at

en
cy

[m
s]

Standrd Soft-RoCE
TCP

(b) larger data sizes

Fig. 5: Soft-RoCE vs TCP in terms of communication latency.

uses Layer 3 (L3) information. A global routing header (GRH)
is used by the network layer to route RoCE v2 data packets,
which is similar to IPv6 addressing.

Typically, RDMA transfer are carried out using a dedicated
hardware RDMA engine, as explained in Section II-A. This
increases the dependencies on external hardware and the
associated proprietary software. However, these dependencies
can be avoided by using Soft-RoCE. Soft-RoCE is a complete
software implementation of the RDMA principles that makes
RoCE v2 protocol available for any Ethernet-based network
interconnect [6]. It is an open-source Github community
project, with contributions from IBM, Mellanox and System
Fabric Works and its implementation is available as a Linux
kernel module. Soft-RoCE avoids system calls and enables
zero copy on the sending side, while it needs only one copy
on the receiving side. The reason for this one copy is that
the RDMA connection has to be identified for the received
data before it can be copied to the corresponding pinned
memory buffer. The performance of Soft-RoCE is comparable
to RoCE v2 [6] while it offers more flexibility and allows a
complete RDMA implementation over any NIC. Soft-RoCE
enables more efficient data transfers compared to the default
Ethernet protocol stack, as shown in Section II-C.

C. Low latency communication using Soft-RoCE

To quantitatively assess the benefits of using RDMA with
respect to the standard communication stack, we perform
experiments where we transfer data between two Intel x86 64
processors running Linux version 5.13.0-51-generic as the
operating system. We compare communication latency for
the default communication stack (which uses TCP to transfer
data) and Soft-RoCE. We use qperf [12] to measure the
communication latency. We vary exponentially the data size
from 1 Kbyte to 32 MB and for each data size, we perform
150 data transfers. Figure 5 shows the average communication
latency with TCP and Soft-RoCE for different data sizes. We
can clearly see that Soft-RoCE performs better than TCP. In
specific cases the communication latency can be reduced by
36%, e.g., for 4 MB data, Soft-RoCE offers a latency of 37 ms
while it is 58 ms with TCP.

We also measure the maximum CPU utilization on the
sender side for each data size across all runs both with TCP
and Soft-RoCE. The results are shown in Figure 6. We can see
that the maximum CPU utilization is much lower with Soft-
RoCE in comparison to TCP. For more than 1 MB data, Soft-

1K 32K 1M 32M
0

20

40

60

size [kbyte]

M
ax

C
PU

U
til

iz
at

io
n

[%
]

Standrd Soft-RoCE
TCP

Fig. 6: Maximum CPU utilization with Soft-RoCE and TCP.

RoCE can reduce the absolute value by more than 25%, e.g.,
the max CPU utilization with Soft-RoCE is 20.3% for 4 MB
data while it is 48.1% with TCP. These results emphasizes the
fact the Soft-RoCE can effectively reduce the CPU load and
the CPU can use this time to execute other workloads.

D. Nondeterministic behavior of Soft-RoCE

Considering that multiple applications are running simulta-
neously on a many-SoC automotive platform, several of them
may want to send data over the same physical network link.
For such scenarios, multiple RDMA connections can be cre-
ated between two SoCs [13]. We have experimentally verified
that such implementations can also be accomplished using
Soft-RoCE. In such implementations, each RDMA connection
can be used by an application to transfer specific data (or a
series of data produced by the same periodic/sporadic task).
For example, in the pedestrian detection application (discussed
in Section I), if we have both ISP and TPU on SoC-1 and the
GPU on SoC-2, the results of ISP and TPU can be sent to the
GPU using two different RDMA connections created between
SoC-1 and SoC-2. Each RDMA connection is associated with
its own pinned memory buffer, data channels, and queues
(discussed in Section II).

While using multiple RDMA connections between two
SoCs, we have identified the following major drawbacks that
prevent the usage of Soft-RoCE for AD/ADAS applications:
(i) When two time-critical applications use different RDMA
connections to send their data, we have observed that data
packets are transferred in an arbitrary order to the receiver
SoC. In certain cases, one application might have to wait
for an arbitrarily long time before its data is transferred. In
AD/ADAS applications, a deterministic ordering of packets,
e.g., first-in first out (FIFO), enable performing a worst-case
analysis to determine an upper bound on the communication
delay [14], which helps to provide performance guarantees.
(ii) When a time-critical AD/ADAS application sends data in
parallel with a best-effort application, there is no guarantee
that the former will be prioritized for RDMA communication.
In particular, we have observed that Soft-RoCE does not have
any notion of priority for communication scheduling. This
means that a critical data packet might be delayed by a non-
deterministic amount of time while a non-critical data packet
is transferred by Soft-RoCE, which is again not desirable.

In Section IV, we show experimental results supporting
our claims on the aforementioned nondeterministic behavior

AppiApp

𝝉i()
εj

Send

Scheduler

AppiApp

Task-Channel Model Generator

𝝉j() εj

InitializeReceive

Scheduler

RoCE Kernel Module

bufferbuffer

Flow-Control Layer

Sender SoC Receiver SoC

Kernel Space

NIC

User Space

Interface
Layer

Task-Channel Model Generator

ini
Inj

2

3
4

5

2

Initialize

6

7

8

RoCE Kernel Module

1 1

Interface
Layer

Flow-Control Layer

Fig. 7: Deterministic Soft-RoCE communication stack.

exhibited by Soft-RoCE.

III. RDMA-BASED AD/ADAS COMMUNICATION STACK

In this section, we describe the proposed multi-layer com-
munication architecture and its initial implementation, as
shown in Figure 7. In particular, we add two upper layers
over a default Soft-RoCE implementation. (i) We add a flow
control layer that manages RDMA operations performed by
the applications. In particular, we can add different scheduling
policies to send and receive data in this layer. (ii) The flow
control layer uses easy-to-use APIs provided by the interface
layer to carry out RDMA communication. This layer wraps
the APIs in Libibverbs which is a user space library com-
prising 36 or more ibverbs (Infiniband verbs) to interact with
the Soft-RoCE kernel module. This layer hides the complex
details of ibverbs from application/middleware developers for
sending and receiving data. Also, it allows us to replace the
implementation of the flow control layer very easily. Note that
application developers can directly use the APIs provided by
this layer without using the flow control layer if they want to
bypass the scheduler.

A. Interface layer

This layer comprises a user space C++ library that provides
three simple APIs, namely Initialize, Send, and Recieve.

1) Initialize API is invoked to set up an RDMA connection.
It initializes the state of different RDMA components,
e.g., QP and CQ states. It registers the memory to
be used for communication. It defines the connection
parameters (e.g., local and remote IP addresses) to
identify the remote side and establish a connection with
it. The arguments to this API are (i) a pointer to the
memory area to be registered and (ii) the IP address of
the remote SoC with the associated port number. Note
that Initialize API has to be invoked on both sending
and receiving sides.

2) Send API is invoked on an SoC to send a data. It creates
and posts a work request on the SQ of the QP. it defines
an error object using which details of the error can be
propagated to the application level on an unsuccessful
completion of the work request. The arguments to Send

API are (i) the IP address of the receiver SoC and (ii) the
size of and the pointer to the data to be transferred.

3) For a successful communication, the receiver SoC also
needs to invoke the Receive API to receive the data.
Similar to the Send API, (a) it creates and posts a
work request on the SQ of the QP and (b) defines an
error object to notify the application of any error in
the communication. The arguments to Receive API are
(i) the IP address of the sender SoC, (ii) the size of the
data to be received and (iii) the pointer to the memory
where the data will be stored.

The aforementioned APIs help the application developer to
integrate Soft-RoCE in their application without the need to
be acquainted with the ibverbs and the associated challenges
to use them appropriately for efficient communication, e.g.,
maintaining QP states, creating work requests, and defining
memory protection domains. Each API in this layer encapsu-
lates several ibverbs1 and provides simple interfaces that any
application developer can interpret correctly, e.g., pointers to
data, data sizes, and IP addresses.

B. Flow control layer

The main function of this layer is to schedule work requests
across different RDMA connections according to a desired
policy. To realize this functionality, we have used Tasking
Framework [15] which is an open-source multi-threading
platform based on the Task/Channel model introduced in [16].
It provides abstract classes with virtual methods to create
applications as directed acyclic graphs (DAGs) of tasks (or
functionalities) and channels (or message queues between
communicating tasks).

In the context of RDMA communication, we use (i) chan-
nels to implement RDMA buffers and (ii) tasks to implement
RDMA send and receive operations. Further, the activation of
a task (τi) can be controlled by configuring the task input(s)
(ini). The flow control layer offers time-driven and event-
driven activation of tasks. In a time-driven activation, the task
invoking an RDMA send/receive operation is triggered by a
periodical signal generated a timer. Hence, we can control the
rate at which data is sent/received irrespective of the rate at
which data is produced. On the other hand, RDMA operation
can also be carried out (or the corresponding task can be
activated) in response to an event, e.g., data is pushed into
the channel by the application. Using such an event-driven
activation, data can also be sent/received sporadically. Both
time- and event-driven activation are useful in AD/ADAS
applications. Also, when multiple inputs are defined for a
task, they can be combined, e.g., by AND or OR operation, to
activate the task. That is, a task can be triggered when either
of the input signals is available or it can be triggered only
when all input signals have arrived. The above task activation
options in the flow control layer allow our proposed stack to
be used for applications with different timing characteristics
and requirements.

1ibverb details ommitted for the sake of readability and space constraint

εks εkr

SOC-2
App#1

App#2

𝝉kr()

𝝉kr+1()
𝝉ks()

SOC-1

Fig. 8: One channel feeding data to multiple consumer tasks.

Using our proposed stack, a number of threads are created
to carry out different RDMA operations. These threads can be
scheduled according to a policy. In the flow control layer, we
have implemented a static fixed-priority scheduler. Note that
when tasks have equal priority, the scheduler dispatches them
using a FIFO policy. Unlike the default implementation of
Soft-RoCE, using a real-time scheduling policy (as described
above) our proposed stack can guarantee (i) in-order packet
delivery for applications with equal priority and (ii) lower
worst-case and average latency for high-priority data packets.

Figure 7 shows how (i) applications interact with the
flow control layer and (ii) the flow control layer uses the
APIs in the interface layer. After an RDMA connection is
established using the initialize API of the interface layer 1 ,
the application have to invoke the task/channel generator of
the flow control layer both at sending and receiving sides to
define theirs channel(s) (ϵ) and task(s) (τ) 2 . Now when
the data to be sent is available at the sending application, it
is directly pushed to its associated channel using the push()
functionality that is implemented in the flow control layer 3 .
push() starts a chain of function calls: activate() and queue()
that queues the task in the ready queue of the priority-based
scheduler 4 . Once the sender task is scheduled for execution,
the scheduler calls the perform() function which calls the Send
API of the interface layer 5 . Simultaneously, on the receiver
side, the RDMA operations are managed in the same way
except that the receiver task is activated and queued by the
scheduler with an empty channel 6 . When the receiver task
is scheduled for execution, the scheduler calls the perform()
function that calls the Receive API of the interface layer 7 .
If the receive operation is successful, the data is then pulled
by the application, and the operation is completed 8 .

C. Real-time extensions

1) Multi-rate DAGs: In automotive systems, we can find
applications that comprise tasks running at different frequen-
cies. Such applications are often modeled using multi-rate
DAGs [17]. In such DAGs, we can easily find a producer
task that feeds data to two or more consumer tasks that run
with different frequencies. Consider an example where frames
captured by the camera are usually available at 30 Hz. They
can be fed to pedestrian detection tasks also at 30 Hz. At
the same time, for lane departure detection, they can be fed
at 100 Hz. Now, when the consumer tasks are in the same
SoC, multiple memory regions are pinned typically to receive
the same data at different rates. However, our communication
stack allows us to implement a set of tasks {τK , τK+1, ..,
τKn} that consume data from the same channel ϵcam with-
out introducing additional memory copies. Hence, with our

εLPi 𝝉i()

𝝉i+1()

𝝉i+2()

in
i

in
i+

1

in
i+

1

AppLp in
H

p

𝝉HP()

εLPi+1

εLpi+2

εHP

AppHp Preemption Points

Fig. 9: Fixed-point preemption in an RDMA communication.

proposed communication stack, it is very easy to implement
realistic distributed automotive systems where applications run
at different rates.

The conventional RDMA operation to serve these flows will
require the user to pin another buffer on SOC-1 and copy
the data between the buffers before creating parallel flows of
data. However, as shown in Figure 8, we can use our stack, to
implement a set of tasks on the reciever side {τKr, τKr+1, ..,
τKrn} that consume the same data channel ϵks on the sender
side without introducing extra copy in the driving functionality
flow. through the task-channel model, our proposal can support
DAGs that have different firing conditions and even different
priorities in order to meet high-level driving application end-
to-end timing requirements.

2) Fixed-point preemption: For mixed-criticality automo-
tive applications sharing the same physical network link for
communication, we may encounter a case where a best-effort
application is blocking the transmission of data packets of
a time-sensitive application. That is, a large amount of data
may be sent by a best-effort application while a time-sensitive
application waits to send its data. This is because Tasking
Framework does not support preemption. Also, such a scenario
will lead to a substantially longer communication latency
for a critical application which might cause unacceptable
performance degradation.

To address this problem, we introduced a preemption feature
in RDMA communication. This preemption policy is particu-
larly useful where multiple applications use the same RDMA
port to send/receive data and have different priorities. In
essence, our flow control layer supports fixed-point preemption
[18], i.e., scheduling decisions can be taken at one or more
fixed points while sending the whole data. To allow such a
fixed-point preemption, we use a multi-channel and multi-
task implementation for sending low-priority and large-sized
data. In this implementation, τLP —the task implementing the
RDMA sending functionality for a low-priority appplication—
is split into a set of tasks τLP i, τLP i+1, .., τLP n}. Each
task takes data from one channel and there is a fixed set
of channels {ϵLP i, ϵLP i+1, .., ϵLP n} instead of one channel
ϵLP . Figure 9 shows an example of how we can implement
preemption-enabled RDMA communication. Here, the sum of
the sizes of these partitioned channels is equal to the size of the
preemption-unaware channel that can hold the whole data to
be sent. Each of these tasks are non-preemptively scheduled in
a certain order given by the design. At each preemption point,
the scheduler checks the availability of other high-priority
RDMA functionalities (or communication tasks), reducing its
blocking time due to low-priority RDMA functionalities. Due

Runtime_checks

Send Task

Reschedule/neglect

Data

Ack

1

2

3

4

5

TasksInputs

Timer

Timer

Channel Channels

Ack

Fig. 10: Sending data via the flow control layer.

to the fixed preemption points, τHP (in Figure 9) can be
executed before τ0, after τ0 or after τ1 based on when
it is ready to run. This ensures reduced and deterministic
latency for high-priority RDMA communication. For such a
preemption policy one can apply worst-case latency analysis
similar to the worst-case response time analysis known in
real-time system literature [18]. To apply such a technique
to estimate the communication latency is a future work.

D. Support for more QoS metrics

Figure 10 illustrates how a more robust RDMA send oper-
ation can be carried out using our proposed stack. Here, an
RDMA send operation involves three steps as follows: (i) to
perform runtime checks before starting data transfer, (ii) to
send data (i.e., calling the Send API in the interface layer), and
(iii) to receive the acknowledgment for successful completion
or reschedule the operation if acknowledge is not received.

Once data is pushed by the application to the channel on the
sending side, it can trigger a task to perform runtime checks.
These checks can be related to different QoS requirements,
e.g., data freshness or security-related. However, the more
checks we perform, the more the communication overhead,
i.e., the communication latency will increase. Once these
checks are finished, a task is triggered to send data. This
task runs based on the scheduling policy configured in the
flow control layer. Note that we can also configure this
task to wait for a timer signal activated periodically. Such a
periodic activation will allow us to implement time-triggered
communication over Soft-RoCE, which may be desirable in
many safety-critical applications. Further, as mentioned in
Section II-A, once an RDMA communication is completed
successfully, there is a WQE in the CQ. We can also use this
information from Soft-RoCE layer to activate a task in the
flow control layer. Simultaneously, we can configure the same
task to get triggered by a timer signal generated after a pre-
configured amount of time from the activation of the data send
task. If the task is first triggered because of the notification for
successful completion, then the timer is inactivated. However,
if the task is triggered by the timer signal then the whole flow
can be restarted or a warning can be generated based on the
design requirements.

IV. EVALUATION

Hardware setup: We emulate a MPSoC platform with internal
RDMA connections by creating a two-node setup where each
node resembles an SoC. Each node comprises a x86 64 Intel
CPU and a RTX 2080 NVIDIA GPU. Both of them are
equipped with an RTL8111 NIC and are connected to the same

1M 2M 4M 8M 16M 32M
0

50

100

150

200

250

300

350

Size [Mbyte]

Ti
m

e
[m

s]

Standard Soft RoCE
Deterministic Soft RoCE

(a) Communication latency

1K 32K 1M 32M
0

10

20

30

size [kbyte]

M
ax

C
PU

U
til

iz
at

io
n

[%
]

Standrd Soft-RoCE
Determinstic Soft-RoCE

(b) Maximum CPU Utilization

Fig. 11: Overheads of Deterministic Soft-RoCE compared to
Standard Soft-RoCE

8-port Gigabit Ethernet switch. Linux 5.13.0-51-generic kernel
runs on both nodes.
Different communication stacks: To transfer data between
the two computation nodes, we use three different communica-
tion stacks. (i) TCP: We can use the default Ethernet protocol
stack with TCP/IP. (ii) Standard Soft-RoCE: We can use the
native Soft-RoCE implementation extended with our simple-
to-use APIs (for initialization, handshake, send and receive).
(iii) Deterministic Soft-RoCE: We can use the full multi-layer
communication stack (including the scheduler layer) that we
have implemented. While we have compared (i) and (ii) in
Section II-C, in this section, we mainly compare (ii) and (iii).
Communication overheads: We assess the overheads added
by Deterministic Soft-RoCE compared to Standard Soft-RoCE
in terms of communication latency and maximum CPU utiliza-
tion. We measure the overheads for sending data packets of
varying sizes from one node to another. (i) We have observed
that the increase in the communication latency stays constant
around 670 us. We have seen a similar overhead for smaller
packets where this increase is significant, e.g., Deterministic
Soft-RoCE increases the latency of sending 64 KB data by
approximately 100%. Nevertheless, as shown in Figure 11a,
for larger packets with more than 1 MB data, the overhead is
less than 7.5%. Later, in this section, we will see that this is
an acceptable cost to pay for sending large-sized safety-critical
data in AD/ADAS applications considering that Deterministic
Soft-RoCE will reduce the worst-case communication latency
significantly in the presence of interfering best-effort data
packets. (ii) We have measured the maximum CPU utilization
on the sender side while sending each data packet. For each
data size, we have considered 150 different data transfers
and have noted the maximum CPU utilization among them.
Figure 11b shows the maximum CPU utilization for sending
data of different sizes both with Deterministic Soft-RoCE and
Standard Soft-RoCE. It is clear that with Deterministic Soft-
RoCE CPU utilization is higher, i.e., more computation is
required by the CPU. For data size up to 4 MB, the difference
in the CPU utilization is less than 1% in absolute value, which
is negligible. For data size more than 4 MB, we see around 5
– 6% absolute increase in CPU utilization. Nevertheless, the
CPU utilization is still significantly lower than when using the
standard TCP stack, as observed in Figure 6.
Packet order: We have created three tasks on one node that

20 40 60 80 100
00

25

50

75

100

Packet number (in which data arrived)

N
um

be
r

of
tim

es
(i

n
10

0
ex

pe
ri

m
en

ts
)

Standard Soft-RoCE
Deterministic Soft-RoCE

Fig. 12: Packets delivered in order with Deterministic Soft-
RoCE and out of order with Standard Soft-RoCE.

1M 2M 4M 8M 16
M

32
M

101

102

103

Data size [MB]

C
om

m
un

ic
at

io
n

la
te

nc
y

[m
s]

Max with Standard Soft-RoCE
Min with Standard Soft-RoCE
Deterministic Soft-RoCE

Fig. 13: Latency for a high-priority data packet.

are sending data in a round-robin fashion. In each turn, a
task sends 4 data packets consecutively. For each sender task,
there is a task on another node receiving the data. We repeat
the experiment 100 times. Let us assume here that the data
transfers have equal priority, i.e., a high priority. For such an
assumption, we expect the data to be sent as per the first-
in-first-out (FIFO) policy. We use Wireshark [19] to observe
when packets are transferred on the network for one task and
note down the order. Figure 12 shows the number of times
(in 100 experiments) data sent by the observed task appeared
on the network as the n−th packet, where 0 ≤ n ≤ 100
(we only consider the first 100 packets in each experiment).
With Deterministic Soft-RoCE, we have seen that the packets
always appear in the network in the same order as they
are sent. This is shown by the solid blue line in the figure
where 4 consecutive packets are sent at a regular interval
by the task under study across all experiments. The line
drops to 0 when packets from other tasks are being sent.
Conversely, with Standard Soft-RoCE, packets appear on the
network out of order, as shown in the figure. Overall with
Standard Soft-RoCE, for the observed task, only 30% of the
packets are received in the same order as they are sent. This
nondeterministic behavior of Standard Soft-RoCE prevents it
to be used for time-sensitive applications because a packet can
be delayed for an arbitrary amount of time, especially when
multiple tasks are communicating over the same network link.

Communication latency: In this experiment, we have three
tasks sending data with different priorities (i.e., high, medium
and low) on one node. On the receiving side, we have a con-

416x4
16x3

416x416x3 DBL Res1 Res2 res8
Accelerator#1

Res8 Res4 DBL DBL CONV Y1

DBL SAM
DBL CONV

DBL CONV

C
o

n
cat Y2

Y3

C
o

n
cat

DBL SAM

Accelerator#2

RDMA

DBL: Darknet Block Layer
Res(n): Residual Block Layer
SAM: Spatial Attention Module
Concat: Concatenations Layer
Y(n): Feature Maps
CONV: Convolutional Layer

Fig. 14: Partitioned YOLO representing a distributed
AD/ADAS application where each partition can run on a
different GPU.

sumer task for each data. We vary the data size exponentially
from 1 MB to 32 MB and carry out 100 runs for each data
size. In Figure 13, we show the when Standard Soft-RoCE
is used for the data transfers, we see that there is a large
variation in the communication latency of the high-priority
packet. The maximum latency can easily be more than two
times of the minimum latency, e.g., for 1 MB, we observe
a maximum latency of 20.6 ms and a minimum latency of
8.9 ms. This clearly shows that Standard Soft-RoCE is not
suitable for sending latency-sensitive (or high-priority) data
packets. Conversely, Deterministic Soft-RoCE respects the
QoS requirement of a packet (e.g., priority in this case). Hence,
in Figure 13, we can see that the communication latency of the
high-priority packet remains constant for each data size when
Deterministic Soft-RoCE is used. Also, the communication
latency for the high-priority packet is nearly equal to the
minimum latency observed when Standard Soft-RoCE is used.
These results show that our proposed communication stack has
the potential to be used for AD/ADAS applications with firm
real-time requirements.

Distributed automotive application: In this experiment, we
want to quantitatively assess the benefits of using Soft-RoCE
towards reducing the end-to-end latency of AD/ADAS appli-
cations. In this context, the most important challenge is that,
to the best of our knowledge, there is no available automotive
benchmark that runs on accelerators distributed over multiple
SoCs. Nevertheless, it is not difficult to imagine that such
implementations will be common in autonomous vehicles
where, for example, object detection and tracking is followed
by motion planning that is further followed by vehicle control
and each of these algorithms can be accelerated using spe-
cialized processors, e.g., [20]. Hence, we have developed a
benchmark to resemble an AD/ADAS application, which is
also an engineering contribution of this paper.

We started with an object detection algorithm based on
YOLO [8], the state-of-the-art family of DNN architectures
and models, pre-trained on the COCO dataset [21]. The DNN
has 106 layers with fully convolutional underlying architec-
ture and provides a very high accuracy in object detection.
Considering that we were looking for at least two neural
networks (NNs) where the result of one is fed into the
second, we partitioned YOLO into two NNs. Here, we have
modified YOLO so that it can be easily partitioned through
parametrization. It is also possible to obtain more than two
NNs from YOLO. An example partitioned YOLO is shown in
Figure 14 where the input of the first NN is a scaled image

(or a camera frame). Note that splitting DNNs for accelerated
training is known [22] and RDMA can even be used in such
setups to improve the training throughput. However, here, we
have used partitioned YOLO for inference.

We run two NNs obtained from YOLO in two different
GPUs attached to different nodes. The output of the first
NN will be used as input by the second NN which we
transfer using Standard Soft-RoCE. For the partitions shown
in Figure 14, 5.64 MB data is transferred using Standard
Soft-RoCE. We measure the computation and communication
time for object detection using distributed YOLO. The com-
putation times in the two nodes add up to 100 ms and the
communication latency is 50 ms, i.e., the end-to-end latency
for object detection is 150 ms. Further, we transfer the same
amount of data using TCP where we get a communication
latency of 65 ms. Thus, with TCP, we can say that the end-
to-end latency of object detection is 165 ms. That is, with
Standard Soft-RoCE, we can reduce the end-to-end latency
by 9.1%. If we consider Deterministic Soft-RoCE that has an
overhead of 0.67 ms, the reduction in the end-to-end latency is
8.7%. These results emphasizes the fact that reduction in the
communication latency can improve the end-to-end latency
of AD/ADAS applications significantly. Note that here we
have not considered the impact of Deterministic Soft-RoCE
in reducing the worst-case latency in comparison to TCP and
Standard Soft-RoCE.

V. RELATED WORKS

RDMA technology has been widely adopted in data centers
over Ethernet networks (i.e., RoCE) to tackle the challenges
in data-intensive applications, e.g., big data analytics and
online gaming [23] [24] [25]. Several works have evaluated
the performance of RoCE in comparison to default Ethernet
communication stacks with TCP/IP, e.g., [26], [27]. These
works clearly show that RoCE reduces the CPU load (related
to network communication) significantly compared to TCP
and, at the same time, offers lower communication latency.
RoCE communication has been traditionally established over
RDMA-capable NICs, i.e., the main focus has been to build
such hardware, e.g., [28]. Although Soft-RoCE has been
developed to enable hardware-independent RDMA commu-
nication, it has not received much attention for industrial use.
Considering that Soft-RoCE offers more flexibility and similar
performance with respect to hardware-based RoCE [6], we
advocate its use in the automotive domain.

The primary research focus in the context of RoCE has
been to control packet congestion in the network switches
that can lead to packet losses. To avoid packet loss, the
default technique in RDMA is to use Go-Back-N protocol
where only the packets following and including the lost packet
are re-sent [29]. However, this protocol suffers from lower
throughput and, hence, is improved to IRN where only the
lost packet is re-transmitted, thereby allowing out-of-order
packet delivery [30], [31]. Further, to avoid buffer overflows
in network switches and NICs, priority flow control (PFC)
mechanisms have been proposed [32], where sender devices

are notified hop-by-hop to pause/resume sending packets based
on the states of the buffers in the receiver devices. PFC is
typically implemented at the port level which might lead
to poor performance, e.g., unfairness and victim flow, with
respect to individual data flows [33], [34]. For flow-level
congestion control, quantized congestion notification (QCN)
is proposed where a data flow is addressed by its identifier
in addition to the MAC address [35]. Data center QCN
(DCQCN) is also proposed to ensure fairness in bandwidth
allocation [33]. Different algorithms are proposed for DCQCN,
e.g., [36]. Note that the problem setting in these works is
very different from ours. In a typical automotive setting with
AD/ADAS applications, the static analysis shall be performed
to estimate buffer size so that time-critical packets are not
lost [37]. Our goal is to minimize the latency of high-priority
data packets and, at the same time, it is acceptable to be
unfair to best-effort packets. Note that these works assume that
packets are sent based on the default RDMA protocol unless
there is congestion, however, we want to prioritize packets
even when there is no congestion and the sending side already
knows the priority of the packets. These existing techniques
cannot be directly applied to solve the problem at hand and
they are mostly implemented on hardware. [38] is the closest
to our work where a hardware priority queue is proposed in the
Queue Pair. However, our communication architecture is more
flexible as we can easily add different scheduling mechanisms
and QoS metrics to the software.

Full-duplex switched Ethernet [39] and BroadR-Reach [40]
standards have enabled the use of Ethernet in safety-critical
automotive systems. Express traffic or high-priority traffic
is recommended in IEEE 802.3br [41], an amendment to
Ethernet protocol. Further, the Time-Sensitive Networking
(TSN) Task Group has proposed several amendments (e.g.,
time synchronization [42], bandwidth reservation [43], and
queueing and forward of time-sensitive frames [44]) to the
Ethernet protocol to support time-sensitive communication.
However, to the best of our knowledge, none of the imple-
mented TSN protocol stack supports RDMA communication.
This work is the first step to carry out RDMA communica-
tion for time-sensitive automotive applications. Our proposed
communication stack is developed keeping in mind a possible
future extension to integrate TSN with RDMA.

In the automotive domain, to the best of our knowledge,
RDMA technology has only been used in Mobile Data lake
(MDLake) to collect vehicle data from all loggers [45]. Again,
hardware-enabled RoCE v2 is used for high-bandwidth com-
munication.However, we propose to use Soft-RoCE for inter-
SoC communication in distributed AD/ADAS applications.
We have performed real-world experiments to evaluate the
performance of our proposed communication stack involving
Soft-RoCE in terms of latency and determinism which are
critical requirements of AD/ADAS applications.

VI. CONCLUSION

In this paper, we propose to use Soft-RoCE for AD/ADAS
applications. We have shown that it can reduce communication

latency significantly compared to a default Ethernet commu-
nication stack over TCP. Further, we have demonstrated non-
deterministic timing behavior in communication over standard
Soft-RoCE. At the same time, we have developed a multi-
layer communication stack and we experimentally show that
using the stack, we can carry out deterministic and low-latency
transfer of high-priority data. In the future, we would like
to extend the stack with support for TSN communication,
in particular, different traffic classes. We want to provide
easy interfaces for Data Distribution Service (DDS) over
Soft-RoCE. Also, we can implement the proposed stacks on
different SoCs and validate its real-time performance.

REFERENCES

[1] B. Wolfe, B. Seppelt, B. Mehler, B. Reimer, and R. Rosenholtz,
“Rapid holistic perception and evasion of road hazards,” Journal of
Experimental Psychology: General, vol. 149, 2020.

[2] M. Bui, L. Chang, H. Liu, Q. Zhao, and G. Chen, “Comparative study of
3d point cloud compression methods,” in IEEE International Conference
on Big Data (Big Data), 2021.

[3] X. Han, J. Lu, Y. Tai, and C. Zhao, “A real-time LIDAR and vision
based pedestrian detection system for unmanned ground vehicles,” in
Asian Conference on Pattern Recognition (ACPR), 2015.

[4] M. Silberstein, “OmniX: An Accelerator-Centric OS for Omni-
Programmable Systems,” in Workshop on Hot Topics in Operating
Systems (HotOS), 2017.

[5] R. Recio et al., “RFC 5040: A remote direct memory access protocol
specification,” Internet Standards (IETF), 2007.

[6] The RoCE Initiative of the InfiniBand Trade Association (IBTA), “Soft-
RoCE: RDMA transport in a software implementation,” 2015.

[7] G. Kaur, M. Kumar, and M. Bala, “Performance Evaluation of Soft-
RoCE over 1 Gigabit Ethernet,” IOSR Journal of Computer Engineering,
vol. 15, 2013.

[8] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

[9] “NividaDocs.” [Online]. Available: https://docs.nvidia.com
[10] InfiniBand Trade Association et al., “Supplement to InfiniBand Archi-

tecture Specification 1.2.1 Annex A16,” 2010.
[11] InfiniBand Trade Association et al., “Supplement to InfiniBand Archi-

tecture Specification 1.2.1 Annex A17,” 2014.
[12] “qperf.” [Online]. Available: https://linux.die.net/man/1/qperf
[13] T. Ziegler, V. Leis, and C. Binnig, “RDMA communciation patterns,”

Datenbank-Spektrum, vol. 20, 2020.
[14] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable

Scheduling Algorithms and Applications. Springer, 2011.
[15] Z. A. Haj Hammadeh, T. Franz, O. Maibaum, A. Gerndt, and D. Lüdtke,

“Event-driven multithreading execution platform for real-time on-board
software systems,” in Proceedings of the 15th OSPERT, 2019.

[16] I. Foster, Designing and building parallel programs: Concepts and
tools for parallel software engineering. Addison-Wesley Longman
Publishing Co., Inc., 1995.

[17] M. Verucchi, M. Theile, M. Caccamo, and M. Bertogna, “Latency-aware
generation of single-rate DAGs from multi-rate task sets,” in IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2020.

[18] R. J. Bril, J. J. Lukkien, and W. F. Verhaegh, “Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with deferred
preemption,” Real-Time Systems, vol. 42, 2009.

[19] “wireshark.” [Online]. Available: https://www.wireshark.org/
[20] Y. Li, S. E. Li, X. Jia, S. Zeng, and Y. Wang, “FPGA accelerated model

predictive control for autonomous driving,” Journal of Intelligent and
Connected Vehicles, 2022.

[21] T.-Y. Lin et al., “Microsoft coco: Common objects in context,” in
European conference on computer vision, 2014.

[22] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu, and Z. Chen, “GPipe: Efficient training
of giant neural networks Using pipeline parallelism,” in International
Conference on Neural Information Processing Systems, 2019.

[23] C. Guo, “RDMA in data centers: Looking back and looking forward,”
Keynote at APNet, 2017.

[24] M. Beck and M. Kagan, “Performance evaluation of the RDMA over
ethernet (RoCE) standard in enterprise data centers infrastructure,” in
Workshop on Data Center-Converged and Virtual Ethernet Switching,
2011.

[25] T. Hoefler et al., “Datacenter Ethernet and RDMA: Issues at Hyper-
scale,” arXiv preprint arXiv:2302.03337, 2023.

[26] Y. Wan, D. Feng, F. Wang, L. Ming, and Y. Xie, “An In-Depth Analysis
of TCP and RDMA Performance on Modern Server Platform,” in IEEE
International Conference on Networking, Architecture, and Storage,
2012.

[27] P. Balaji, H. V. Shah, and D. K. Panda, “Sockets vs RDMA interface
over 10-gigabit networks: An in-depth analysis of the memory traffic
bottleneck,” in Workshop on RDMA: Applications, Implementations, and
Technologies (RAIT), 2004.

[28] Y. Yuan, J. Huang, Y. Sun, T. Wang, J. Nelson, D. R. K. Ports, Y. Wang,
R. Wang, C. Tai, and N. S. Kim, “Rambda: Rdma-driven acceleration
framework for memory-intensive µs-scale datacenter applications,” in
IEEE International Symposium on High-Performance Computer Archi-
tecture (HPCA), 2023.

[29] Y. Wang, K. Liu, C. Tian, B. Bai, and G. Zhang, “Error Recovery of
RDMA Packets in Data Center Networks,” in International Conference
on Computer Communication and Networks (ICCCN), 2019.

[30] R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krishnamurthy, S. Rat-
nasamy, and S. Shenker, “Revisiting network support for RDMA,” in
ACM Special Interest Group on Data Communication, 2018.

[31] Q. Meng and F. Ren, “Lightning: A Practical Building Block for RDMA
Transport Control,” in IEEE/ACM 29th International Symposium on
Quality of Service (IWQOS), 2021.

[32] I. S. Association, “IEEE Standard for Local and metropolitan area
networks–Media Access Control (MAC) Bridges and Virtual Bridged
Local Area Networks–Amendment 17: Priority-based Flow Control
(IEEE. 802.11Qbb,” 2011.

[33] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-
scale rdma deployments,” ACM SIGCOMM Computer Communication
Review, vol. 45, 2015.

[34] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,
“RDMA over commodity Ethernet at scale,” in ACM SIGCOMM Con-
ference, 2016.

[35] I. S. Association, “IEEE Standard for Local and Metropolitan Area
Networks– Virtual Bridged Local Area Networks Amendment 13: Con-
gestion Notification (IEEE. 802.1Qau,” 2010.

[36] T. Wang, H. Kan, Q. Sun, S. Xiao, and S. Wang, “Congestion detec-
tion and link control via feedback in RDMA transmission,” in IEEE
International Conference on Service Science (ICSS), 2022.

[37] M. Benazouz and A. Munier-Kordon, “Cyclo-Static DataFlow Phases
Scheduling Optimization for Buffer Sizes Minimization,” in ACM Inter-
national Workshop on Software and Compilers for Embedded Systems,
2013.

[38] L. Rosa, W. Song, L. Foschini, A. Corradi, and K. Birman, “Dere-
choDDS: Strongly consistent data distribution for mission-critical appli-
cations,” in IEEE Military Communications Conference, 2021.

[39] Aeronautical Radio, Incorporated, “ARINC 664 P7 – AIRCRAFT DATA
NETWORK PART 7 AVIONICS FULL-DUPLEX SWITCHED ETH-
ERNET NETWORK,” 2009.

[40] Broadcom Corporation, “BroadR-Reach R Physical Layer Transceiver
Specification for Automotive Applications V3.0,” 2014.

[41] IEEE Standards Association, “IEEE Standard for Ethernet Amendment
5: Specification and Management Parameters for Interspersing Express
Traffic (IEEE 802.3br-2016),” 2016.

[42] IEEE Standards Association, “IEEE Standard for Local and Metropoli-
tan Area Networks – Timing and Synchronization for Time-Sensitive
Applications in Bridged Local Area Networks (IEEE 802.1AS2010),”
2010.

[43] IEEE Standards Association, “IEEE Standard for Local and Metropolitan
Area Networks - Virtual Bridged Local Area Networks - Amendment:
9: Stream Reservation Protocol (IEEE 802.1Qat-2010),” 2010.

[44] IEEE Standards Association, “IEEE Standard for Local and Metropolitan
Area Networks—Virtual Bridged Local Area Networks - Amendment:
Forwarding and Queuing Enhancements for Time-Sensitive Streams
(IEEE 802.1Qav-2009),” 2009.

[45] b-plus Group, “MDLake 100G data sheet,” 2022. [Online]. Available:
https://www.b-plus.com/fileadmin/data storage/100G EN v1.0.pdf

https://docs.nvidia.com
https://linux.die.net/man/1/qperf
https://www.wireshark.org/
https://www.b-plus.com/fileadmin/data_storage/100G_EN_v1.0.pdf

	Introduction
	Remote Direct Memory Access (RDMA)
	Communication using an RDMA connection
	RDMA over Converged Ethernet (RoCE)
	Low latency communication using Soft-RoCE
	Nondeterministic behavior of Soft-RoCE

	RDMA-Based AD/ADAS Communication Stack
	Interface layer
	Flow control layer
	Real-time extensions
	Multi-rate DAGs
	Fixed-point preemption

	Support for more QoS metrics

	Evaluation
	Related Works
	Conclusion
	References

