
Arm MUCH: Full-spectrum hardware-event-based
Armv8 application profiler

Andrea Misuraca
Technical University of Munich

andrea.misuraca@tum.de

Andrea Bastoni
Technical University of Munich

andrea.bastoni@tum.de

Abstract—Profiling on Arm architecture using the Perfor-
mance Monitoring Unit (PMU) gives developers low-overhead
access to Hardware Events Monitors (HEM). These events are
available on every Armv8-based platform and provide detailed
information on the execution of applications, including multicore-
related interference and usage of shared hardware resources.
Prompt access to such information is fundamental for mixed-
criticality systems in order to manage and regulate interference.
Despite board configuration providing dozens of different HEMs
(typically 30 to 50), the PMU only allows the simultaneous
monitoring of a limited number of them (generally between 6
and 8). A simultaneous full-spectrum hardware profiling based
on HEMs is therefore not possible. Recently, a methodology
(MUltiCorrelation HEM reading and merging approach MUCH)
has been proposed to statistically reconstruct a coherent HEM-
based execution context from multiple application runs. MUCH
has been validated only in a bare-metal environment for an NXP
T2080 PowerPC platform. Given the widespread adoption of
the Arm architecture for embedded systems, in this paper we
implemented the MUCH approach for the Armv8 architecture
on Linux to assess the viability of such an approach for complex
systems. Our results on a Raspberry Pi 3 Model B confirm the
practicality of the approach on complex Armv8-based systems.
Furthermore, we explored how to leverage the obtained full
statistical profile to derive properties of the analyzed application,
for example, the sufficient set of HEMs to simultaneously monitor
at runtime with minimal information loss, and machine learning-
based models for HEMs prediction on a future set of applications.

Index Terms—Arm, profiling, PMU, HEM, pairwise-
correlation

I. INTRODUCTION

Software profiling is a dynamic program analysis technique
where a program’s behavior is modeled using data moni-
tored at runtime. Hardware-based software profiling enables
developers to better understand the execution of a program,
monitoring how the hardware layer reacts to the application.
When integrating applications with different criticalities on
complex multi-processor systems, monitoring of hardware
performance counters is the basic mechanism used by several
techniques (e.g., [14], [23]) to manage hardware-related inter-
ference (especially in the memory subsystems) and to achieve
higher isolation among otherwise independent applications.

The Arm architecture exposes Performance Monitor Units
(PMUs) as architecture-specific, on-chip solution for low-

Andrea Bastoni was supported by the Chair for Cyber-Physical Systems in
Production Engineering at TUM and the Alexander von Humboldt Foundation.

overhead hardware event-based profiling. In this context, Hard-
ware Event Monitors (HEMs) constitute the hardware events
to be observed, and Performance Monitor Counters (PMCs)
represent the actual architectural counter where the monitored
information is stored. The Armv8 architecture defines a stan-
dard, common set of HEMs that should be present in any
implementation, and a set of HEMs that could be optionally
implemented by manufacturers [6].

Compared to other software profiling and debugging so-
lutions (e.g., Arm CoreSight [8]), Arm hardware-event-based
profiling has low overhead and generates less execution in-
terference in terms of e.g., resource usage and bus accesses.
Unfortunately, extensive application profiling and monitoring
using HEMs is limited by the low number of PMCs that are
typically available on Arm boards. In fact, PMCs are often
a magnitude order fewer than the HEMs that could possibly
be monitored. Therefore, despite the standard availability of
PMCs and HEMs on Arm-based platforms, monitoring the
full hardware execution context observing one single run of
an application (or a benchmark) is not possible.

MUltiCorrelation HEM reading and merging (MUCH) is
a recent approach [20] that relies on statistical analysis to re-
construct the full-hardware application context across multiple
runs of an application or benchmark. The approach has been
developed to target explicitly complex multiprocessor systems-
on-chip (MPSoC), where HEM monitoring and profiling is
becoming progressively more important to master interference
among mixed-criticality (real-time) applications [15]. In [20],
the approach has been validated in a bare-metal setup (without
operating system) on a PowerPC NXP T2080. Given the
increasing relevance of the Arm architecture for complex MP-
SoC used in safety critical automotive, industrial, and avionics
domains, this paper proposes Arm MUCH, an application
profiler for the Armv8 architecture that adopts the MUCH-
approach and runs on a complex operating systems such as
Linux. With Arm MUCH we:

• Validate whether the MUCH approach can be applied to
real-world Arm architectures together with a complex op-
erating system such as Linux. Our results on a Raspberry
PI 3 with Linux 5.9.93 confirm the applicability of the
MUCH methodology to the Arm architecture even with
a complex operating system.

• Contribute a framework for implementing MUCH on
Armv8. In particular, we automated the HEM allocation



at application runtime, the gathering of the retrieved data
and performing the statistical MUCH methodology.

• Interface the Arm MUCH framework with multiple pro-
filing technologies for Arm Linux, namely perf, eBPF,
and inline assembly for manual HEMs allocation.

• Explore how to derive the minimal set of HEMs that
best characterize an application. This enables confidence
in capturing the key properties of an application despite
the limited number of monitored PMCs.

• Implement AI-based HEM-prediction systems that use
the statistical data retrieved by MUCH to reconstruct the
complete set of HEMs inside one benchmark execution
by forecasting all non-monitored HEMs.

The rest of this paper is organized as follows. Section II in-
troduces the concepts of MUCH and discusses previous work.
Section III presents the architecture of Arm-MUCH, while
Section IV discusses its implementation and our experimental
results. Section V concludes.

II. BACKGROUND AND RELATED WORK

A. The MUCH Approach

The core concept underlying the MUCH approach [20] is
to rearrange and merge individual and independent HEM
readings into one single coherent dataset as if each all HEMs
were all measured in the same run. MUCH employs Multi-
Variate Gaussian Distributions (MVGD) to preserve all pair-
wise HEM correlations simultaneously. The goal is to use
measured data to generate full-spectrum HEM vectors (merged
from multiple runs) of size nh in accordance with the MVGD
model X ∼ Nnh(µ̂, Σ̂), where µ̂ and Σ̂ are the empirical
expected value and empirical covariance matrix obtained in
multiple runs of the experiments for the same HEM hi.
The empirical covariance matrix Σ̂ can be obtained from the
empirical correlation matrix Ŝ that expresses the correlation
ρ̂ij for each pair of empirical HEMs vectors ({hi}, {hj}).
Each empirical covariance value σ̂ij in Σ̂ is computed as:
σ̂ij = ρ̂ij · σ̂i · σ̂j , where σ̂i is the variance associated with an
empirical vector of HEMs {hi}.

In order to use Multi-Variate Gaussian Distributions, the
correlation between two different HEMs must be correctly
evaluated. Each HEM needs to be measured in the same
sub-experiment, namely a benchmark run, at least once with
every other HEM present in the machine. Each HEM’s “true”
value is statistically modeled with a Gaussian distribution.
Therefore, by the central limit theorem, each sub-experiments
should run multiple times for a sufficient amount of time. We
run each sub-experiment for at least 10 seconds and repeat
every experiment 50 times.

From a mathematical point of view, the challenge is to
reorder the grouped sample vector {hi} for each HEM hi,
such that for each pair of HEMs {hi} and {hj}, the empirical
correlation ρ̂ij of the grouped samples is close to ρij , namely
the Pearson’s empirical correlation between {hi} and {hj},
calculated in the sub experiment in which they are both
allocated.

B. Previous Work

Despite the risks of non-precise and context-dependent
event accounting, the low overhead and widespread availability
of HEMs have been exploited in a host of tools to gain
insights into application’s behavior [10]. In the embedded
real-time field, the usage of HEMs have been leveraged in
multiple works to monitor and regulate MPSoC interference
at both cache [13], [14], interconnect [19], [23], and DDR
level [17], [22]. Recent architecture-level features such as Arm
MPAM [7] or Intel RDT [12] extend the concept of HEMs to
provide quality of service throughout the memory subsystem.
The usage of HEMs for profiling purposes in the GPU and
accelerators domain is a standard practice supported e.g., by
tools such as the NVIDIA Nsight Systems [16]. The Arm
v8.2 architecture also introduced a dedicated infrastructure
for statistical profiling [9], but its usage and adoption is still
limited. The Arm Coresight [8] infrastructure can deliver both
hardware assisted application profiling and debugging capa-
bilities. Its overheads for data collection and exporting hinder
nonetheless its usage for low-overhead hardware profiling.

Alternative approaches to MUCH (e.g., [11], [18], [21]) to
merge HEMs have been shown [20] to be not applicable to
HEMs or inferior to the MUCH approach.

III. ARCHITECTURE

Our Arm MUCH framework is divided in two main com-
ponents:

• Profiler Middleware that will access and manage the
run-time progress of the profiled application. Currently,
Arm MUCH supports both perf subsystem and kprobes
in order to evaluate and obtain HEMs data at run-time
from the profiled application. We note that any profiler
compatible with the perf output format could be used for
the data acquisition.

• Data Analysis Framework that performs the data pro-
cessing. This includes data collection, loading and writing
benchmark sessions to disk, and the statistical evaluations
associated with MUCH.

The framework has been split into two components to provide
a wider set of profiling tools that the end-user can leverage
to validate the data collected. The implementation abstracts
away details of the e.g., Linux perf API and provides a unified
interface for data processing that facilitated the validation of
the experimental data.

A. Profiling Middleware

The profiling layer supports two ways to allocate at run time
the selected set of HEMs to be monitored.

The first approach uses Linux perf to select the HEMs from
bash’s command line. This approach is the easiest one, as
we do simply need to spawn a correct instance of perf with
the application we choose to monitor and the right sets of
HEMs right after the -e argument. Despite its easiness of use,
with this approach we can only monitor the entire application
from start to end. Specifically, we cannot monitor particular



sections of the application or have warm-up phases e.g., to
avoid measuring memory allocation and initialization.

The second supported method for selecting HEMs is a
lightweight API for code instrumentation. The API can di-
rectly allocate, enable, and disable hardware events. The API
wraps the perf_event_open() syscall to access PMUs
for writing and reading purposes. This method provides better
integration and function-level granularity with the trade-off
of rebuilding the application against the profiling middleware,
inserting the right calls for PMU activation, and reading the
data through a file descriptor.

B. Data Analysis Framework

The data analysis framework processes the data generated
by the profiler—any profiler could be used as long as the
traces are in perf-format—and supports the statistical MUCH
analysis. The framework consists in a main application that
supports different modes, with regard to what the inputs
and outputs should be, including e.g., processing previous
benchmark iterations using the -l flag, or exporting benchmark
sessions to disk using -w argument. The statistical evaluation
is performed in python using numpy [1], scipy [3], and
sklearn [4]. Plots and graphical evaluation are visualized using
matplotlib. HEMs vector results are exported as binary file or
printed on stdout.

The application implements different phases to performs the
MUCH analysis of event counters.

1) Empirical correlation matrix: Ŝ(i, j) is calculated
between all pair of HEMs hi and hj . Each cell of
the matrix is defined as Pearson correlation coefficient
between HEMs at a given column and row. Hence, this
matrix will be symmetrical with unitary values on the
main diagonal.

Ŝ(i, j) =

{
1, for i = j
ρ̂ij , for i ̸= j

}
2) MVGD mapping: Using copula theory and Percent

Point Function, each HEM counter measurement {hi}
is mapped to its relative value as it was part of normally
distributed linear space.

3) MVGD-mapped covariance matrix: Σ̂0(i, j) is calcu-
lated between all pair of HEMs, using MVGD values
with covariance and correlation values from the experi-
ments. Each cell of the matrix is defined as follows:

Σ̂0(i, j) =

{
σ̂2
i , for i = j

σ̂i × σ̂j × ρ̂ij , for i ̸= j

}
4) Random samples extraction: This step reconstructs

empirical data order statistics from the MVGD-mapped
covariance matrix, using the multivariate-normal func-
tion.

5) MVGD-based correlation matrix: This step calculates
the correlation matrix between all between all pairs of
HEMs using the sorting order defined by the previous
steps.

Fig. 1: Output example of the PMU statistical evaluation.

6) Mean Squared Error (MSE): Since multiple sorting
orders could exist, this step selects the best reordering—
among multiple iterations—that minimizes the mean
squared error between the empirical correlation matrix
and the MVGD-based correlation matrix.

In addition to the standard MUCH analysis, the framework
can automatically: i) cluster HEMs to identify the smallest
set of HEMs that could reflect the key characteristics of
the profiler application, and ii) make prediction on values of
HEMs that were not allocated in a specific run.

Since the maximum number of PMUs that can be traced
simultaneously in one run is limited (e.g., the Arm Cortex-
A53 supports simultaneous tracing from only six PMUs),
clustering the most “meaningful” HEMs helps reducing the
number of runs to identify application behaviors. Clustering
of n HEMs is determined by maximizing the sum of the
maximum absolute correlation values with regards to every
other HEMs within one experiment. Correlation values are
filtered using the python Pandas Dataframe [2].

Furthermore, the framework implements three machine
learning algorithms (Linear Regression, Multi-layer Percep-
tron, and Random Forest) to predict values for HEMs that
were not allocated in a specific run. The models are trained
on the full set of all HEMs.

IV. IMPLEMENTATION AND EVALUATION

The framework, comprising the profiling middleware and
the data analysis component, has been developed in Python
and C. The profiler middleware automates the activities of
profiling applications and benchmarks using both perf and our



Fig. 2: Single-core experiment correlation matrix for pairs
of HEMs. In each box, the upper value is the empirical
correlation, the lower value the MVGD-correlation.

lightweight API for code instrumentation. The data analysis
frameworks implements the phases described in Sec. III-B.

In order to enable profiling support in the Linux kernel, the
kernel configurations related to BPF and IKHEADERS must be
enabled. The framework requires a version of the perf profiling
tool that matches the compiled kernel version (perf can be
found in the Linux kernel sources, under ./tools/perf).
Furthermore, the framework needs Python > 3.9.2 (including
pip).

The framework has been validated with Linux on a Rasp-
berry Pi 3 Model B (Arm Cortex-A53 cores).1 We used
Armbian Buster as Linux distribution, running a 5.9.93 Linux
kernel with enabled profiling-configuration.

A. HEM Correlation Matrices

We evaluated pairwise correlation of HEMs as well as the
Arm MUCH approach in a single- and multi-core setup.

The single-core setup also serves as validation and uses
a CPU-intensive benchmark that computes the discrete log-
arithm for random natural numbers. Each benchmark-run
execute 90000 iterations. The multi-core setup uses the Sys-
bench [5] tool. Sysbench is a scriptable multi-threaded bench-
mark tool that creates complex time-based workloads. In our
testing, we used t = 10 in order to generate multithreaded
benchmarks of 10 seconds lengths. Fig. 1 presents the output
of the tool with multiple runs of the benchmarks.

We performed testing runs using both setups and identified
17 statistically-relevant HEMs, i.e., whose values were orders

1The framework was also tested on Huawei Taishan Servers using a
proprietary OS. We cannot disclose information on this setup.

Fig. 3: Multi-core experiment correlation matrix for pairs
of HEMs. In each box, the upper value is the empirical
correlation, the lower value the MVGD-correlation.

of magnitude larger than the remaining HEMs. Specifically,
we focused on: br mis pred, br pred, bus access, bus cycles,
cpu cycles, instr retired, l1d cache, l1d cache wb,
l1d cache refill, l1i cache, l1i cache refill, l2d cache,
l2d cache refill, ld retired, mem access, pc write retired,
and st retired. These HEMs have been allocated to 21
different sub-experiment, and each HEM is part of 5 sub-
experiments. Hence, there are 50 × 5 measurements for each
of the hardware monitors.

The matrices in Fig. 2 and Fig. 3 underline the correlation
between couples of HEMs {hi} and {hj}. In each correlation
box, the the upper value is the empirical correlation σ̂ij =
σ̂i×σ̂j×ρ̂ij and the lower one is the MVGD-based correlation
after the MUCH data processing.

As expected, data from the predictable synthetic single
process CPU-intensive benchmark presents very different cor-
relation than the sysbench multiprocessing benchmark.

The single-core benchmark (Fig. 2) manifests a strong
correlation between HEMs, mostly describing partial linear
relationships between HEMs belonging to the same context,
such as cache misses, or branch predictions. Instead, the
multi-core benchmark (Fig. 3) presents less correlated data,
including negative relationship between pairs of HEMs.

B. Accuracy Evaluation

We focus on the accuracy of the framework with respect
to the empirical correlation of sub-experiment data and to
potential errors in predicting HEM values in later benchmark
executions.

We assessed the distribution of the delta between empirical
pairwise correlation and MVGD sampled pairwise correlation



Fig. 4: Correlation delta as probability density function for
single-core benchmark and 25000 values/HEM

Fig. 5: Correlation delta as probability density function for
single-core benchmark and 250 values/HEM

between couples of HEMs. This quantifies how much the
reconstructed samples differ from the actual data after MVGD
processing. Fig. 4 and Fig. 5 show the distribution of the
correlation deltas for the single-core benchmark and 25000
and 250 samples/HEM respectively. Overall, we found the
correlation delta to depend on the number of values sampled
for each HEM and reaching 0.4 (0.6) for 25000 (250) samples
of each HEM. As noted in [20], we also observed that the
experimental and the reconstructed values depends on the
number of iterations (optimization steps) performed during
sorting to obtain the re-arranged full-wide HEMs vectors
((step (5) in Sec. III-B). In our experiments, the optimization
step had a lower impact than the number of collected samples
per HEM. This is visible in Fig. 5 that shows a higher vari-
ability of the correlation delta when only 250 samples/HEM
are profiled.

TABLE I: MAPE: CPU-intensive single-process benchmark

MAPE: CPU-intensive single-process benchmark
HEM name MLR MLP RF
br pred 0.000545 0.164585 0.000460
bus cycles 0.002273 0.009775 0.006071
inst retired 0.000349 0.012472 0.000330
l1d cache 0.000454 0.011996 0.000347
l1d cache wb 0.036503 51.105616 0.014636
l1i cache 0.007588 0.014341 0.003902
l1i cache refill 0.433256 4.051663 0.459776
l2d cache 0.350933 2.164955 0.674850
l2d cache refill 0.037171 28.199508 0.027867
ld retired 0.000535 0.065614 0.000350
mem access 0.000633 0.011904 0.000549
pc write retired 0.000478 0.098950 0.000509
st retired 0.000262 0.012920 0.000346

0.870979 85.924299 1.189993

C. HEM Clustering

We used the framework to identify cluster of HEMs that can
best characterize an application, despite the limited number
of monitored PMCs in one run. We defined HEM clusters
to contain the n HEMs that maximize the sum of maximum
absolute correlation values with regards to every other HEMs
in an experiment.

For the single core benchmark experiment, we discover that
branch predictions, L1 cache counters, and CPU cycles coun-
ters (br immed retired, br mis pred, br pred, cpu cycles,
l1d cache refill, l1i cache refill) are the most suited to cap-
ture the behavior of the benchmark with a maximum absolute
correlation value of ∼ 7.866.

For the sysbench multi-core benchmark, the best clus-
ter includes the bus access and the write-retired counters
(br immed retired, bus access, l1d cache refill, l1i cache,
l1i cache refill, pc write retired) with a maximum absolute
correlation value of ∼ 6.874.

D. AI-based HEM Prediction

Arm MUCH provides a full statistical analysis of the
correlation between HEMs. We used this data set to train three
machine-learning models—Linear Regression (MLR), Multi-
layer Perceptron (MLP), Random Forest (RF)—and to evaluate
the capability of the framework in predicting non-monitored
HEM values.

After training on the set of re-arranged HEM vectors, i.e.,
after applying MUCH, we fed the networks with subsets of
HEM values coming from the HEM clustering experiments,
and evaluated the accuracy of the networks in generating
non-monitored HEMs. We used the full values of the HEM-
clustering experiments as empirical reference. The accuracy
of the forecasted values has been assessed using the Mean
Absolute Percentage Error (MAPE).

Tables I and II report the MAPE accuracy for MLR, MLP,
and RF networks in predicting HEM values that were not
measured during a benchmark run. In the tables, the best
values are marked in blue color, while the ones exhibiting
more than 10% MAPE error are marked in red. The values
are the average of 10 experiments.



TABLE II: MAPE: Sysbench multithreaded benchmark

MAPE: Sysbench multiprocess benchmark
HEM name MLR MLP RF
br pred 0.396886 0.003298 0.697910
bus cycles 0.390227 0.161784 0.697271
cpu cycles 0.299356 0.534736 0.697193
inst retired 0.447805 0.234720 0.696650
l1d cache 0.575274 0.330672 0.595609
l1d cache refill 47.127874 0.799111 0.350560
l1d cache wb 86.262104 10.248902 0.314104
l1i cache 0.130094 0.004722 0.696297
l2d cache refill 40.071846 186.542361 0.291218
ld retired 11.226796 1.327011 0.585759
mem access 10.733564 0.425685 0.596006
pc write retired 0.341011 0.027340 0.696904
st retired 4.933629 0.431589 0.607128

202.936466 201.071931 7.522609

The Sysbench multithreaded benchmark (Table II) clearly
shows that RF outperforms MLP and MLR. Notably, MLR
predictions exceed five times the threshold (10) and MLP
can produce very high errors (186.54 for l2d cache refill
predictions). The CPU-intensive benchmark (Table I) confirms
the trends. The results are preliminary, as more training and
experiments will be needed to fully assess the capability of
the framework. Nonetheless, the approach seems promising.

V. CONCLUSION

In this paper, we have presented Arm MUCH, a frame-
work for the Armv8 architecture that adopts the MUCH [20]
approach to overcome the limitations of modern PMUs that
only allow a reduced number of HEMs to be monitored
simultaneously.

We have validated the applicability of MUCH to Arm in
contexts that include a complex operating system (Linux)
and non trivial benchmark applications. Furthermore, we have
investigated extensions of MUCH to i) derive minimal sets
of HEMs that can best characterize the runtime behavior of
an application, and ii) predict values of non-monitored HEMs
using AI-networks trained on the full set of statistical data.

Our results confirm that Arm MUCH can capture the
correlation between HEMs observed in different runs with ad-
equate accuracy. Our experiments on clustering and prediction
presented promising initial results that are worth investigating
in future works, potentially in combination with tools to detect
and analyze hardware noise,2 to better understand whether the
currently achieved accuracy can be improved. Additionally, the
Random Forest approach to predict HEM values would benefit
from a larger training set and more iterations.

In the future, we would also like to investigate the inte-
gration with custom eBPF programs and user-defined uprobe
hooks to easily and precisely access performance counters.

REFERENCES

[1] Python Numpy: documentation. https://numpy.org/doc/stable/reference/
index.html#reference.

[2] Python Pandas: Dataframe. https://pandas.pydata.org/docs/reference/api/
pandas.DataFrame.html.

2https://www.kernel.org/doc/html/latest/trace/osnoise-tracer.html

[3] Python Scipy: documentation. https://docs.scipy.org/doc/scipy/.
[4] Python Sklearn: documentation. https://scikit-learn.org/stable/modules/

classes.html.
[5] Sysbench: repository. https://github.com/akopytov/sysbench.
[6] ARM. Arm Architecture Reference Manual for A-profile architec-

ture. https://developer.arm.com/documentation/ddi0487/latest/ Accessed:
2023-05-01.

[7] ARM. Arm Architecture Reference Manual Supplement. Memory
System Resource Partitioning and Monitoring (MPAM) for Armv8-A.
https://developer.arm.com/docs/ddi0598/latest Accessed: 2023-05-01.

[8] ARM. Arm CoreSight Architecture.
https://developer.arm.com/Architectures/CoreSight Architecture
Accessed: 2023-05-01.

[9] ARM. Arm Statistical Profiling Extension.
https://community.arm.com/arm-community-blogs/b/architectures-
and-processors-blog/posts/statistical-profiling-extension-for-armv8-a
Accessed: 2023-05-01.

[10] Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis Polychronakis,
and Fabian Monrose. Sok: The challenges, pitfalls, and perils of using
hardware performance counters for security. In 2019 IEEE Symposium
on Security and Privacy (SP), pages 20–38, 2019. doi:10.1109/
SP.2019.00021.

[11] Trevor Hastie, Rahul Mazumder, Jason D. Lee, and Reza Zadeh. Matrix
completion and low-rank svd via fast alternating least squares. J. Mach.
Learn. Res., 16(1):3367–3402, jan 2015.

[12] Intel. Resource Director Technology.
https://www.intel.com/content/www/us/en/architecture-and-
technology/resource-director-technology.html Accessed: 2023-05-01.

[13] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and
M. Bertogna. Deterministic Memory Hierarchy and Virtualization for
Modern Multi-Core Embedded Systems. In 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), page 1–14,
2019.

[14] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni. Real-time cache management framework for multi-core archi-
tectures. In 2013 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), page 45–54, 2013.

[15] Laurence H. Mutuel, Xavier Jean, Vincent Brindejonc, Anthony Roger,
Thomas Megel, and E. Alepins. Assurance of Multicore Processors
in Airborne Systems. Technical Report DOT/FAA/TC-16/51, FAA and
Thales Avionics, 2017.

[16] NVIDIA. NVIDIA Nsight Systems. https://developer.nvidia.com/nsight-
systems Accessed: 2023-05-01.

[17] Xing Pan and Frank Mueller. Controller-aware memory coloring for
multicore real-time systems. SAC ’18, page 584–592, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/
3167132.3167196.

[18] Benjamin Recht. A simpler approach to matrix completion. J. Mach.
Learn. Res., 12(null):3413–3430, dec 2011.

[19] Ahsan Saeed, Dakshina Dasari, Dirk Ziegenbein, Varun Rajasekaran,
Falk Rehm, Michael Pressler, Arne Hamann, Daniel Mueller-
Gritschneder, Andreas Gerstlauer, and Ulf Schlichtmann. Memory
Utilization-Based Dynamic Bandwidth Regulation for Temporal Isola-
tion in Multi-Cores . In 2022 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), page 133–145, 2022.

[20] Sergi Vilardell, Isabel Serra, Enrico Mezzetti, Jaume Abella, and Fran-
cisco J. Cazorla. Much: Exploiting pairwise hardware event monitor
correlations for improved timing analysis of complex mpsocs. In
Proceedings of the 36th Annual ACM Symposium on Applied Computing,
SAC ’21, page 511–520, New York, NY, USA, 2021. Association for
Computing Machinery. doi:10.1145/3412841.3441931.

[21] Sergi Vilardell, Isabel Serra, Roberto Santalla, Enrico Mezzetti, Jaume
Abella, and Francisco J. Cazorla. Hrm: Merging hardware event
monitors for improved timing analysis of complex mpsocs. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
39(11):3662–3673, 2020. doi:10.1109/TCAD.2020.3013051.

[22] H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni. PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms. In 2014 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS), page 155–166, 2014.

[23] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory
Bandwidth Management for Efficient Performance Isolation in Multi-
Core Platforms. IEEE Transactions on Computers, 65(2):562–576, 2016.

https://numpy.org/doc/stable/reference/index.html#reference
https://numpy.org/doc/stable/reference/index.html#reference
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://www.kernel.org/doc/html/latest/trace/osnoise-tracer.html
https://docs.scipy.org/doc/scipy/
https://scikit-learn.org/stable/modules/classes.html
https://scikit-learn.org/stable/modules/classes.html
https://github.com/akopytov/sysbench
https://doi.org/10.1109/SP.2019.00021
https://doi.org/10.1109/SP.2019.00021
https://doi.org/10.1145/3167132.3167196
https://doi.org/10.1145/3167132.3167196
https://doi.org/10.1145/3412841.3441931
https://doi.org/10.1109/TCAD.2020.3013051

	Introduction
	Background and Related Work
	The MUCH Approach
	Previous Work

	Architecture
	Profiling Middleware
	Data Analysis Framework

	Implementation and Evaluation
	HEM Correlation Matrices
	Accuracy Evaluation
	HEM Clustering
	AI-based HEM Prediction

	Conclusion
	References

