
A Real-Time virtio-based Framework for

Predictable Inter-VM Communication

Gero Schwäricke∗ Rohan Tabish† Rodolfo Pellizzoni§ Renato Mancuso‡

Andrea Bastoni∗ Alexander Zuepke∗ Marco Caccamo∗

∗ Technical University of Munich, {name.surname}@tum.de
† University of Illinois at Urbana-Champaign, rtabish@illinois.edu

§ University of Waterloo, rpellizz@uwaterloo.edu
‡ Boston University, rmancuso@bu.edu

Abstract—Ensuring real-time properties on current heteroge-
neous multiprocessor systems on a chip is a challenging task.
Furthermore, online artificial intelligent applications –which are
routinely deployed on such chips– pose increasing pressure on
the memory subsystem that becomes a source of unpredictability.
Although techniques have been proposed to restore independent
access to memory for concurrently executing virtual machines
(VM), providing predictable inter-VM communication remains
challenging. In this work, we tackle the problem of predictably
transferring data between virtual machines and virtualized hard-
ware resources on multiprocessor systems on chips under consid-
eration of memory interference. We design a “broker-based” real-
time communication framework for otherwise isolated virtual
machines, provide a virtio-based reference implementation on top
of the Jailhouse hypervisor, assess its overheads for FreeRTOS
virtual machines, and formally analyze its communication flow
schedulability under consideration of the implementation over-
heads. Furthermore, we define a methodology to assess the
maximum DRAM memory saturation empirically, evaluate the
framework’s performance and compare it with the theoretical
schedulability.

I. INTRODUCTION

Nowadays, artificial intelligence (AI) algorithms are widely

used at run-time in complex embedded cyber-physical domains

(e.g., automotive, avionics, and industrial automation) that

require real-time assurance. Due to the need to reduce size,

weight, and power, modern embedded systems on a chip (SoC)

that can sustain the heavy data requirements of AI feature

not only multicore architectures but also integrate special-

purpose accelerators such as FPGAs and GPUs. Examples of

such complex heterogeneous multiprocessor systems on a chip

(MPSoC) are the Xilinx Ultrascale+ and Versal or the NVIDIA

Jetson Xavier [39], [55], [57]. Ensuring the real-time proper-

ties of these complex systems is challenging. To make things

worse, the need to transfer large amounts of data among cores

and accelerators to meet the requirements of AI applications

causes the memory hierarchy –shared caches, interconnect,

and DRAM– to become a source of unpredictability.

In order to enable a practical real-time analysis of such

systems, previous work [31], [33], [58], [59] has focused on

isolating the access to the memory hierarchy for independent

execution contexts (partitions or virtual machines (VM)). A

significant advantage of these techniques is that they integrate

easily into hypervisors (e.g., [31], [56]) and enable the isolated

execution of unmodified VMs. By design, though, the strength

of these approaches (i.e., ensuring isolation) is also their

major drawback when it comes to establishing communication

channels –which, by definition, violate isolation– between

VMs.

In this paper, we propose an architecture that enables pre-

dictable communication for VMs on heterogeneous MPSoCs

under explicit consideration of the interference caused by

memory communication. We further analyze and evaluate

the memory interplay between cores and a DMA engine

concurrently accessing the interconnect. DMA engines (widely

available on MPSoCs) are specifically designed to perform

efficient data copying and thus are the natural accelerator-

choice to perform bulk data transfers. Still, it is unclear what

their impact is on the timeliness of transfers under memory

interference. As basic building blocks, we rely on established

mechanisms (cache-coloring, MemGuard, hardware-enforced

QoS [7], [33], [49], [59]) that have proved to perform well

to guarantee isolation, but we: a) extend their scope to isolate

independent VM communication flows and empirically deter-

mine the maximum sustainable DRAM memory bandwidth;

b) make them available as a virtio-based, transparent and

predictable communication framework; c) provide an analysis

of the scheduling of different communication flows under

consideration of the maximum sustainable bandwidth and

framework overheads, and provide guidelines for system-

designers on how to dimension the DMA regulation to both

maximize CPU bandwidth and ensure schedulability.

Given the widespread adoption of hypervisors (e.g., [4],

[24], [44]) as industry standard to partition complex software

systems, our real-time communication framework enables pre-

dictable communication between (unmodified) VMs hosted on

top of a hypervisor (in our proof-of-concept, Jailhouse [4]).

The interface between our framework and the unmodified

VMs is implemented using the virtio standard [1], to ensure

the widest portability. Using a standardized virtual device

interface at the hypervisor level, the system can be composed

of different operating systems, each satisfying the require-

ments of its applications. By exploiting the flexibility of the

virtio approach, our framework provides universal but pre-

dictable communication between OSs of different complexity

and criticality, for example RTOSs and baremetal algorithms

for hard real-time applications and Linux for soft real-time

applications.

Our approach is inspired by the split driver model provided

by Xen [54] and used in the high-performance domain to

multiplex accesses from different VMs to a single hardware

device. Under this model, a device (i.e., its hardware resources,

including the interfaces –mapped registers, PCI aperture, etc.–

to access it) is assigned by the hypervisor configuration to

a single VM (normally with special privileges), which then

acts as multiplexer (or broker) for other VMs that require

access to it. The other VMs do not see the physical device but

communicate via a virtualized device –emulated at hypervisor

level– first with the broker, which in turn schedules the

communication flows on the physical device.

Our architecture adopts a similar broker-based approach

with the following advantages:

• Asynchronous communication: Once the data to be trans-

ferred has been taken in charge by the broker, a VM

could continue its execution in parallel to the data transfer

(assuming there are no data dependencies).

• Straightforward DMA integration: Since modern MP-

SoCs feature at least one DMA, the broker can program

the DMA to take care of the copy operations. Since

the broker is the only VM entitled to program the

DMA, access control to this resource is trivially solved.

Furthermore, compared to CPU-based data copies, using

DMA engines in a real environment makes the broker’s

CPU available to perform other computations.

• Centralized scheduling: being in charge of both DMA

and shared hardware devices, the broker can centralize

scheduling decisions regarding, e.g., priorities of com-

munication flows.

By design, our architecture does not allow direct shared-

memory communication between VMs, which we assume to

have different criticality. The broker is the only (privileged)

VM that mediates communication among different criticality

levels. This type of architecture cleanly separates the configu-

ration and resource allocation concerns for partitioned systems

(e.g., avionics or automotive ones) and easily integrates onto

systems that already support communication concepts such

as ARINC’s queuing ports [5]. Strictly partitioning shared-

memory areas and delegating the control over communication

to a privileged entity simplifies the certification activities that

are required by, e.g., DO-178 C or ISO 26262 standards [27],

[46]. In fact, communication among entities with different

criticality levels is traditionally subject to careful planning and

close scrutiny by certification authorities [47] since this repre-

sents an intentional violation of partitioning. Our framework

aims to simplify these certification activities by enabling the

separation of different independent communication flows.

To summarize, in this paper, we: 1) propose the design of

a virtio-based real-time communication framework to enact

predictable communication between isolated VMs under con-

sideration of memory interference; 2) contribute a real-time

analysis of limited-preemption EDF scheduling of the commu-

nication flows under consideration of the measured framework

overheads; 3) provide guidelines to system designers on the

dimensioning of the system regulation to achieve maximum

bandwidth, while preserving the I/O flow schedulability; 4)

propose a reference implementation of the framework on the

Jailhouse hypervisor [4] using FreeRTOS virtual machines and

contribute a methodology to empirically assess the maximum

DRAM memory saturation under non-additive memory regu-

lation; and 5) empirically evaluate our solution and compare

it against the theoretical analysis.

We introduce the system model in Section II. Section III

presents the architecture and technical details on the imple-

mentation. Section IV contains the schedulability analysis and

summarizes guidelines to dimension the minimum DMA band-

width. Section V shows how to measure DRAM saturation

and our experimental results. We present related work in

Section VI, and we conclude in Section VII.

II. SYSTEM MODEL

We consider a multi-core platform with m general-purpose

application CPUs (or cores), identified as CPUk, k ∈
{1, . . . ,m}. Each CPU includes a private level 1 (L1) cache

(separated for data and instructions); all the CPUs share

a level 2 (L2) cache, which is also the last-level cache

(LLC). The caches implement a hardware coherence protocol.

The LLC uses a write-back, write-allocate policy for normal

cacheable memory. To be as generic as possible, we assume

that the LLC line replacement policy is pseudo-random. Mem-

ory transactions that miss in LLC cause accesses to DRAM.

A cache refill causes a read transaction of size Sl bytes; a

dirty line write-back triggers a write transaction of Sl bytes.

We assume that the mapping between physical addresses and

cache sets is known, i.e., we assume that the cache controller

performs no index bits hashing [34].

The main memory subsystem comprises a single DRAM

controller in a multi-bank configuration. We assume that bank

interleaving is disabled. This way, the bits in the physical

addresses (PA) that encode for DRAM banks (bank bits) are

more significant than those encoding for DRAM rows (row

bits) and columns (column bits).

Our architecture employs a partitioning hypervisor to define

a set of isolated partitions. Each partition has a set of statically

allocated hardware resources so that the guest OS operating

within the partition is only capable of using/accessing a subset

of the system resources. We refer to the guest OS and its

partitioned hardware resources with the term virtual machine

(VM). The partitioning hypervisor performs no virtual-CPU

scheduling. Although a VM could have multiple CPUs as-

signed, without loss of generality, in this paper we consider

the case that a given VMk is statically allocated one CPUk.1

Furthermore, each VM (and hence CPU) has a statically

assigned private slice of DRAM and a private LLC partition

using page coloring [31], [33].

We consider sporadic unicast VM-to-VM communication

facilitated by a broker that is responsible for organizing

1The CPU-dependent memory-regulation consideration can be applied
independently to each CPU.

Fig. 1. Proposed system architecture for a system with m processor cores.
VM-to-VM communication is mediated by a Broker VM that coordinates
DMA transfers. VMs memory is partitioned using cache-coloring.

the data transfers. An overview of the system is displayed

in Figure 1. To carry out any memory transfer, the broker

exclusively manages a Direct Memory Access (DMA) engine.

To achieve more flexibility with respect to configuration and

application deployment, in our prototype (Section III), the

broker is exclusively allocated to one of the main CPUs of

the system, but it could equivalently operate on a specialized

CPU with dedicated local scratchpad memory. Such CPUs

are commonly available on many MPSoCs (e.g., [57]). In our

prototype, the logic of the broker is implemented as bare-metal

firmware with minimal memory footprint. We assume that the

DRAM traffic generated by the broker’s logic is negligible

(i.e., the broker’s code and data fully fit into the private L1

caches), and we focus on the traffic generated by the broker-

controlled DMA engine.2

A. Memory Regulation Model

The partitioning hypervisor is responsible for DRAM band-

width partitioning. Specifically, memory traffic originated by

the CPUs as a result of LLC line refills (reads) and write-

backs (writes) is regulated with a technique similar to Mem-

Guard [33]. Conversely, the memory bandwidth of the broker’s

DMA is regulated via hardware QoS extensions, such as the

ARM QoS subsystem [7] considered in, e.g., [49].

The generic MemGuard-regulated CPUk is assigned a

quota of Qk cache refills per regulation period P . Qk is an

absolute number, typically related to architecturally available

hardware performance counters (PMC), while P is expressed

in seconds. We indicate the upper-bound on the memory band-

width that can be consumed by CPUk as bck = 〈bc,rk , bc,wk 〉,
where bc,rk (resp., bc,wk) is the read (resp., write) DRAM

bandwidth expressed in bytes/second. In the worst-case, any

cache refill causes two DRAM transactions – a cache refill

plus a write-back. Thus, we make the simplifying assumption

2Note that, although beneficial, a DMA engine is not strictly required by the
proposed architecture. In the absence of DMA, the broker VM could directly
perform the data transfer to the destination VM. In future work, we plan to
extend the analysis to also include this use case.

that bc,rk = bc,wk . Given Qk, it is always possible to compute

bc,rk = bc,wk = (Qk · Sl)/P .

The DMA used by the broker to perform VM-to-VM data

transfers is assigned a QoS level ab. In this case, the parameter

expresses the rate at which read/write transactions are issued

by the DMA towards the DRAM. We assume the same level

of regulation for both read and write transactions and symmet-

ric communication transfers between source and destination.

Therefore, the corresponding data bandwidth achieved by the

DMA is bb = bb,r = bb,w.

When using ARM QoS extensions, the ab parameter is

an integer ∈ [1, 212] that determines the transactions/second

issuance rate = (ab · fclk)/2
12 [49] for the DMA, where

fclk is the clock frequency of the interconnect. Thus, one can

compute the bandwidth in bytes/second

bb = (Sb · a
b · fclk)/2

12, (1)

where Sb is the size in bytes of the read/write memory

transactions generated by the DMA (block size). The actual

bandwidth of the DMA is subject to contention due to memory

interference by other bus masters and delays due to the DMA’s

internal management. We determine the DMA bandwidth

limiting under given interference in Section V-A.

We assume that the broker pays a non-negligible overhead

Odma to program the DMA engine for a new transfer. As such,

it is convenient to program the DMA to transfer (large) chunks

of fixed size Sc expressed in bytes. Sc must be a multiple of

Sb. The time it takes for the DMA to complete a single transfer

of size Sc can then be computed as Odma + Sc/b
b.

A key property we rely on is that applications deployed on

the CPUs as well as transfers performed by the DMA engine

incur negligible contention delay when accessing the main

memory as long as the DRAM subsystem always operates

below 100% utilization (saturation threshold) [49]. To ensure

that this is respected by design, we assume that it is possible

to model the impact of bandwidth assignment to cores and

the broker’s DMA on the DRAM utilization. Specifically, the

function Uc(bck) is used to compute the worst-case DRAM

utilization that results from assigning bck to CPUk. Similarly,

Ub(bb) captures the worst-case DRAM utilization caused by

the broker’s DMA regulated at bb. Thus, it must hold that:

Ub(bb) +

m
∑

k=1

Uc(bck) ≤ 1. (2)

B. Communication Infrastructure & Model

We consider a set Γ of n directed, periodic communication

flows where for each flow, a sender VM and a receiver VM are

uniquely identified. Communication channels between senders

and receivers are statically configured and their characteristics,

i.e., periodicity and required bandwidth per flow, are known

at run-time. Since we focus on inter-VM communication, we

assume that the sender and receiver VM are distinct. Each

flow τi ∈ Γ, i ∈ {1, . . . , n} comprises a potentially infinite

sequence of packets, and it is defined as a tuple of the form

〈Ci, Di, Pi, si, ri〉, where Ci is the data size of its packets, Pi

is its period –or minimal inter-arrival time for sporadic flows–

and Di represents its (arbitrary) relative deadline. Finally, si
(resp., ri) represents the index of the sender (resp., receiver)

VM and corresponding CPU.

III. ARCHITECTURE

Figure 1 presents our system architecture. A hypervisor

instantiates a specialized VM for communication management

(broker VM) and up to m−1 real-time constrained application

VMs (each associated with one core). The hypervisor uses

cache coloring [31] to provide dedicated cache partitions to

each VM (including the broker VM) and regulates the band-

width of the VMs using MemGuard [59]. It also configures the

DMA engine’s bandwidth regulation and memory mapping.

The system features an IO-MMU (e.g., [8]) that allows the

DMA to use the same address translation as the cores.

A. Virtio Interface

In order to achieve maximum portability across different

virtual machines and guest OSs, the communication model as

specified in Section II utilizes the widely-used virtio spec-

ification [1] as the interface for data exchange. The guest

operating system can use regular virtio-compliant drivers. The

hypervisor exposes a virtualized device (virtio device) to the

guest OS and provides a transparent relay of communication

requests to the broker VM. Virtio provides several types of

virtual devices (e.g., block or network devices).

The virtio specification follows a classic driver model for

DMA-capable devices: The driver allocates data buffers and

provides them to the (virtual) device in advance for incoming

traffic and on-demand for outgoing traffic. Data buffers are

organized in a structure called virtqueue, which is based on

a buffer descriptor table, and two ring buffers for buffer

exchange between driver and device. Virtio devices utilize

multiple virtqueues for different purposes. A basic device

setup uses one RX virtqueue for incoming traffic and one TX

virtqueue for outgoing traffic. In addition to the device types,

the virtio specification defines their virtqueues, and the format

of data exchange with them. Furthermore, different transport

options for virtqueues such as MMIO and PCI-based device

virtualization are specified.

The event notification between drivers and devices relies on

OS/hypervisor-provided primitives. Specifically, a virtio device

can notify a driver using interrupts. A driver can notify a

device using a synchronous exception by performing an access

to a specific address that is mapped with restricted access

permissions for the VM.

Our approach uses the interface for socket-type devices,

which avoids the overheads of simulating a full communi-

cation device (e.g., networking card) by utilizing the inher-

ent ring buffers of the virtio specification for direct packet

exchange between the guest and the host (hypervisor). We

use one virtqueue for incoming (RX) and one virtqueue for

outgoing (TX) data transfers. The socket interface also defines

a third type of virtqueue for event data that is not required by

our approach and therefore unused in our architecture.

Virtio socket devices transfer data in packets, which consist

of a fixed-size header and a data payload of dynamic size.

However, since the receiver allocated buffers for incoming

traffic in advance, the buffers’ (pre-allocated) size can be

much smaller than the data payload buffer. This has to be

accommodated in the communication infrastructure by split-

ting the payload and copying it into multiple receiver buffers.

As a simplification, we split packets with large payloads into

multiple data transfers.

B. Data Flow Scheduling

Our approach employs a trusted communication broker

VM for predictable data traffic between otherwise isolated

environments. As discussed in Section II, this is achieved by

scheduling and rate-limiting the data transfers of statically

defined communication flows between pairs of VMs. The

broker receives all packet transfer requests and schedules

the packets according to EDF using the fixed granularity

Sc. The broker then programs the DMA to perform data

copies of the same Sc size. The packets are inserted into a

queue sorted by increasing absolute deadlines. To reduce the

processing overhead on the broker VM, we use a separate

queue per guest and let the driver on the sender core insert

the packet from hypervisor mode. Due to this optimization,

we create a separate cache partition to isolate data that needs

to be shared between broker and hypervisor from interference.

This partition contains information about the communication

channels, the sorted packet queues of all guests, lock objects,

and ring buffers for the return of used packet information

objects.

Figure 2 shows an example packet transfer from VM1 to

VM2. When a guest application in VM1 decides to send a

packet 1 , its virtio socket driver prepares the packet header

and payload in a buffer in the TX virtqueue. VM1 then 2

sends a notification to the virtio socket device. The device,

which operates in hypervisor mode, 3 determines the channel

of the pending packet and inserts the packet information into

the per-VM transfer queue. In detail, the device computes

the absolute deadline for the packet as the current time

plus the modified relative deadline D′
i for the packet (see

Section IV for how D′
i is derived) and inserts the packet into

the queue, sorting by the absolute deadline. Then 4 it notifies

the broker VM. The broker proceeds to 5 schedule all transfers

pending from any guest (see also the analysis in Section IV).

When a packet is scheduled for transfer, the DMA engine is

programmed to 6 copy the payload data from the TX buffer

of the sender to an empty RX buffer of the receiver. After

completion 7 , the DMA notifies the broker, which in turn
8 informs the sender and the receiver VM of the completed

transfer. The guest OSs will then 9 free the no longer required

TX buffer (VM1) and process the received packet payload

(VM2). Lastly, VM2 will add a new (or the received) RX

buffer to its RX virtqueue to restore the full capacity of the

virtqueue for incoming traffic.

Fig. 2. Communication flow in the virtio backend for an example packet
transfer from VM1 to VM2.

C. Implementation

We have validated our architecture by implementing it

on a Xilinx ZynqMP ZCU102 embedded MPSoC [57]. The

platform features four ARM Cortex-A53 cores sharing a last

level L2 cache of 1 MiB size. Each core has 32 KiB of

private L1 instruction and data caches. The cores provide

cache-refill performance counters needed for MemGuard. Our

implementation employs the coherent DMA provided by the

ZCU102 and limits its transfer rate using the interconnect’s

hardware QoS regulators [7].

We use the partitioning hypervisor Jailhouse [4]. By cour-

tesy of earlier works [31], [49] that made their implementa-

tions publicly available, the Jailhouse version used in this work

integrates cache coloring, MemGuard, and QoS bandwidth

regulation. We implemented the virtio PCI transport layer

based on Jailhouse’s virtualized PCI root controller. The virtio

PCI transport layer enables automatic discovery of our virtio

socket devices by the OS. The socket device is implemented

in the hypervisor and integrates with the broker VM for data

exchange and signaling.

The communication broker is implemented as a baremetal

application with minimal footprint, and its code and data

sections fit entirely in the core’s L1 caches. For all code

and data of the broker as well as all shared data between

hypervisor and broker, we use a dedicated cache partition

in the L2 cache to reduce cache interference with the other

VMs. Packet notifications are implemented using chip-wide

broadcast events (SEV/WFE) to eliminate IPI delays and

IRQ processing overheads. The overhead for notification 4 is

therefore included as a small constant overhead in the queue

insertion 3 and the queue searching 5 .

We have integrated our architecture with FreeRTOS [22]

guest instances3 where we implemented a virtio socket driver

and the PCI transport layer. We note that Linux provides a

standard virtio socket driver. However, since the Linux kernel

enforces extra data copies for secure communication between

kernel and user-space, we believe the Linux implementation

3The implementation is available at https://github.com/gschwaer/rt-virtio.

might introduce considerable overheads. We plan to integrate

the Linux driver and evaluate its performance in future work.

Our implementation of the memory bandwidth regulation

currently does not take the (comparatively few) memory

accesses performed by the hypervisor and by the address

translation units into account. Furthermore, the hypervisor

address space is not colored, and memory accesses by the

hypervisor can result in the eviction of cache lines.

IV. ANALYSIS

In this section, we discuss how to assess schedulability for

a flow set Γ assuming a DMA bandwidth bb. Following the

architecture described in Section III, we assume that a packet

of flow τi arrives when the guest application sends it and

completes when the receiver VM is notified of the transfer;

hence, we say that τi is schedulable if the difference between

completion and arrival time for any packet of τi is no larger

than its relative deadline Di.

We show how Γ can be transformed into a set of sporadic

tasks Γ′ whose feasibility can be tested using standard analysis

techniques for uniprocessor scheduling, such that Γ′ being

schedulable implies that Γ is also schedulable. Specifically, we

will transform each flow τi into a limited preemption [9], [12],

sporadic task τ ′i = 〈C
′
i(b

b), D′
i, P

′
i , J

′
i , q

′
i(b

b)〉, where C ′
i(b

b)
is the execution time of the task, P ′

i its minimum interarrival

time, D′
i its relative deadline, J ′

i its release jitter, and q′i(b
b)

the maximum time that the task executes in non-preemptive

mode.

Let ai,j denote the arrival time of the j-th packet of flow τi;
by definition in our model, it holds that ai,j+1 ≥ ai,j+Pi. As

discussed in Section III-B, the absolute deadline of the packet

is computed by the virtio device. The arrival time a′i,j of the

j-th job of the transformed task τ ′i corresponds to the instant at

which the absolute deadline is computed. Let Omin
s , Omax

s de-

note the minimum and maximum time, respectively, between

the guest application sending the packet and the virtio device

computing its deadline. This implies that for any packet/job,

a′i,j ≥ ai,j + Omin
s and a′i,j ≤ ai,j + Omax

s ; and from

ai,j+1 ≥ ai,j+Pi we derive: a′i,j+1−O
min
s ≥ a′i,j−O

max
s +Pi,

which means that τ ′i is still sporadic but with a reduced period

P ′
i = Pi +Omin

s −Omax
s . As we will show in Section V-B, in

practice the difference Omax
s − Omin

s is small (less than one

microsecond in our implementation).

Note that, even if the absolute deadline of the packet

is computed at time a′i,j , the packet does not immediately

become eligible for scheduling at the broker; this is because

the device needs to insert the packet in the corresponding

queue and inform the broker. We model such behavior by

introducing a release jitter J ′
i for the transformed task, where

J ′
i represents the maximum time required for queue insertion

and notification.

As discussed in Section III-A, each packet of τi is broken

into a set of ⌈Ci/Sc⌉ transfers: specifically, ⌈Ci/Sc⌉ − 1
transfers of length Sc, and one of length C last

i = Ci −
(

⌈Ci/Sc⌉ − 1
)

· Sc. Each of the former has a transfer time

Odma + Sc/b
b; note that Odma includes the time required to

make a scheduling decision, the time to program the DMA

engine before the transfer, the time for processing the DMA

notification once the transfer is completed, and the time it

takes to trigger a notification of a partial transfer to the

receiver VM. The last transfer suffers an additional overhead

Opckt,i to remove the packet from its sender’s queue, resulting

in a transfer time Odma + C last
i /bb + Opckt,i. We show

how to determine the values of such overheads in details

in Section V-B. Furthermore, the broker cannot make any

scheduling decision while a transfer is ongoing. We thus model

the scheduling of data transfers by associating each task τ ′i
with an execution time:

C ′
i(b

b) = (⌈Ci/Sc⌉ − 1) · (Odma + Sc/b
b) + (3)

Odma + C last
i /bb +Opckt,i =

= ⌈Ci/Sc⌉ ·Odma + Ci/b
b +Opckt,i,

obtained by summing the transfer times of all packets, and a

non-preemptive time equal to the maximum transfer time of

any packet:

q′i(b
b) = Odma + (4)

{

C last
i /bb +Opckt,i if Ci ≤ Sc;

max
(

Sc/b
b, C last

i /bb +Opckt,i

)

if Ci > Sc.

Finally, let Or to denote the time required by the receiver

VM to obtain such notification after it is triggered by the

broker. When scheduling flow τi, our implementation uses a

modified relative deadline D′
i = Di − Omax

s − Or. Hence, if

Γ′ is schedulable, any packet of τi will complete transfer no

later than a′i,j +Di − Omax
s − Or; since a′i,j ≤ ai,j + Omax

s

and it takes Or to notify the receiver VM after the last data

transfer of the packet, this means that the packet will complete

no later than ai,j + Di, i.e., τi and indeed Γ is schedulable

according to our model.4

We next summarize the schedulability analysis for sporadic,

limited-preemption tasks under EDF in [9], [12]. Note that [9],

[12] do not consider release jitter, but such term can be inte-

grated in the analysis following related work (e.g., see [50]).

We use U ′
i(b

b) = C ′
i(b

b)/P ′
i and U ′(bb) =

∑n

i=1 U
′
i(b

b) for

the utilizations of task τ ′i and task set Γ′, respectively.

For an interval of length t, the demand bound function

DBFi(t, b
b) of task τ ′i is the maximum cumulative execution

requirement of all jobs of τ ′i that have both their release times

and absolute deadlines within the interval. When including

release jitter and arbitrary deadlines, this is computed as:

DBFi(t, b
b) = max

(

0, 1+
⌊ t− (D′

i − J ′
i)

P ′
i

⌋)

·C ′
i(b

b). (5)

[9], [12] show that if Γ′ is not schedulable, then at least one

of the following conditions must hold: (1) ∃ t ≥ 0 such that:
∑

i=1...n

DBFi(t, b
b) > t; (6)

4Note that the reverse is not true, i.e., it is possible for Γ to be schedulable
and Γ′ to be unschedulable. Hence, the schedulability condition in the
Theorem 1 is necessary and sufficient for Γ′ but only sufficient for Γ.

(2) ∃ t, t′ with t ≥ t′ > 0 and a job of a task τ ′j with absolute

deadline strictly greater than t such that the job executes non-

preemptively between time 0 and t′ and:

∑

i=1...n,i 6=j

DBFi(t, b
b) > t− t′. (7)

Note that by definition t′ ≤ q′j(b
b), and hence t − t′ ≥ t −

q′j(b
b). Therefore, Equation 7 implies:

q′j(b
b) +

∑

i=1...n,i 6=j

DBFi(t, b
b) > t. (8)

Also note that since the job of τ ′j executes starting at 0 and has

absolute deadline after t, it must hold D′
j > t. Assume D′

j >
t ≥ D′

j − J ′
j ; then by definition DBFj(t, b

b) ≥ C ′
j(b

b) ≥
q′j(b

b). This implies:

∑

i=1...n

DBFi(t, b
b) ≥ q′j(b

b) +
∑

i=1...n,i 6=j

DBFi(t, b
b) > t,

(9)

meaning that Condition (1) is also violated at time t. For this

reason, it suffices to check Condition (2) for t < D′
j −J ′

j , for

which DBFj(t, b
b) = 0 and thus

∑

i=1...n,i 6=j DBFi(t, b
b) =

∑

i=1...n DBFi(t, b
b).

A schedulability criterion can then be constructed by negat-

ing Condition (1) and (2). In the following theorem, we

express it in a compact way by maximizing the value of

q′j(b
b) in Equation 8 over all tasks that meet the condition

D′
j − J ′

j > t.

Theorem 1: A sporadic limited-preemption task set Γ′ is

schedulable under EDF if and only if:

∀ t ≥ 0 : Q(t, bb) +
∑

i=1...n

DBFi(t, b
b) ≤ t, (10)

where:

Q(t, bb) = max 0 ∪ {q′j(b
b) | ∀j ∈ {1...n}, D′

j − J ′
j > t}.

(11)

Note that Theorem 1 does not provide a schedulability test,

because we cannot test an infinite number of values of t.
However, it is simple to see that it is sufficient to test those

values of t for which the demand bound function for some

task changes, which comprise the following set:

D = {k · P ′
i +D′

i − J ′
i | ∀i ∈ {1...n}, k ∈ N}. (12)

Furthermore, following [10], [11], [23], it can be shown that if
Conditions (1), (2) are violated, then it must hold U ′(bb) > 1
or t < T ∗(bb), with:

T ∗(bb) =














H if U ′(bb) = 1;

min
[

H,max
(

maxn
i=1{D

′

i − J ′

i},

1
1−U′(bb)

·
∑n

i=1 U
′

i(b
b) ·

(

P ′

i − (D′

i − J ′

i)
)

)] if U ′(bb) < 1,

(13)

Algorithm 1: Compute minimum DMA bandwidth for

which Γ′ is schedulable

1 input: Transformed task set Γ′

2 output: Minimum bandwidth bbmin; or FAILURE if

the task set cannot be scheduled

3 if U ′(bb) ≤ 1 cannot be satisfied then

4 return FAILURE

5 Compute bbmin,0 (Eq. 16)

6 bbmin ← bbmin,0

7 for tk ∈ D in increasing order do

8 if tk ≥ T ∗(bbmin) then

9 return bbmin

10 if Q(tk, b
b) +

∑n

i=1 DBFi(tk, b
b) ≤ tk cannot be

satisfied then

11 return FAILURE

12 Compute bbmin,k (Eq. 18 for case Q(tk, b
b) = 0)

13 bbmin ← max(bbmin, b
b

min,k)

where H = lcm(P ′
1, . . . , P

′
n) is the hyperperiod. Therefore,

instead of Equation 10 the schedulability test can use the

equivalent condition:

U ′(bb) ≤ 1 ∧ (14)

∀ t ∈ D, t < T ∗(bb) : Q(t, bb) +
∑

i=1...n

DBFi(t, b
b) ≤ t.

Note that the test involves performing a O(n) computation for

each time point in D until T ∗(bb). As discussed in [9], [12], if

U ′(bb) is upper bounded by a constant c < 1, then the number

of points to be tested, and thus the complexity of the test, is

pseudo-polynomial.

A. Minimum DMA Bandwidth

Equation 14 allows us to check the schedulability of the

transformed task set Γ′, and therefore also of the original flow

set Γ, assuming that the bandwidth bb available to the DMA is

given. However, in general the system designer might be more

interested in specifying a set of flows, and then determining

the minimum value of bb under which Γ′ is schedulable;

minimizing bb maximizes the remaining memory bandwidth

that can be assigned to the m cores according to Equation 2.

A naive way of computing such minimum bandwidth bbmin

would be to use binary search over the values of bb that

satisfy Equation 14. However, in the remaining of this section

we show that we can directly compute bbmin with the same

computational complexity of running the test in Equation 14

–that is, by performing a O(n) computation for each tested

point in D. For simplicity of exposition, let us index the time

instants in D as t1, t2, . . . , tk, . . . in increasing order. We also

use ηi(t) = max
(

0, 1 +
⌊

t−(D′

i
−J ′

i
)

P ′

i

⌋)

to denote the number

of jobs included in the demand bound function for τ ′i at t.

Note that the condition U ′(bb) ≤ 1 can be rewritten to:

n
∑

i=1

(

⌈Ci/Sc⌉ ·Odma + Ci/b
b +Opckt,i

)

/P ′
i = (15)

n
∑

i=1

(

⌈Ci/Sc⌉ ·Odma +Opckt,i

)

/P ′
i +

∑n

i=1 Ci/P
′
i

bb
≤ 1.

Then if
∑n

i=1

(

⌈Ci/Sc⌉ · Odma + Opckt,i

)

/P ′
i ≥ 1, the

condition cannot be satisfied, and the task set is unschedulable.

Otherwise, we obtain:

bb ≥

∑n

i=1 Ci/P
′
i

1−
∑n

i=1

(

⌈Ci/Sc⌉ ·Odma +Opckt,i

)

/P ′
i

. (16)

Let bbmin,0 denote the minimum value of bb that satisfies

Equation 16 (that is, the right hand size of the equation). We

use bbmin,k to denote the minimum value of bb that satisfies

Equation 10 for t = tk; we can obtain bbmin,k by rewriting

Equation 10 in a way similar to Equation 15. However, because

it can either hold Q(t, bb) = 0 or Q(t, bb) = Odma + Sc/b
b

or Q(t, bb) = Odma + C last
j /bb + Opckt,j for some task τ ′j ,

we have to consider three cases. If ∄τ ′j : D′
j − J ′

j > t, then

Q(t, bb) = 0 and we obtain:

∑

i=1...n

DBFi(t, b
b) = (17)

n
∑

i=1

ηi(t) ·
(

⌈Ci/Sc⌉ ·Odma +Opckt,i

)

+

∑n

i=1 ηi(t) · Ci

bb
≤ t.

Again, if
∑n

i=1 ηi(t) ·
(

⌈Ci/Sc⌉ · Odma + Opckt,i

)

≥ t, the

condition cannot be satisfied, and the task set is unschedulable.

Otherwise we obtain:

bbmin,k =

∑n

i=1 ηi(t) · Ci

t−
∑n

i=1 ηi(t) ·
(

⌈Ci/Sc⌉ ·Odma +Opckt,i

) .

(18)

Similar equations can be derived if there exists a task τ ′j with

D′
j −J ′

j > t, in which case we need to consider both the case

of Q(t, bb) = Odma + C last
j /bb + Opckt,j , where τ ′j is the

task with the largest value of C last
j among those that satisfy

D′
j − J ′

j > t, as well as the case Q(t, bb) = Odma + Sc/b
b

(if for any such task it holds Ci > Sc). In this case, bbmin,k is

taken as the maximum between the cases that apply.

Finally, Algorithm 1 shows how to compute bbmin. We

initially set bbmin = bbmin,0. Then, we iterate over the points in

D. At each step, we update bbmin as the maximum between its

previous value, and the newly computed bbmin,k. If at any step

the schedulability condition cannot be met no matter the value

of bb, the algorithm fails. Otherwise, the algorithm terminates

once it reaches a tk greater than or equal to T ∗(bbmin), as this

guarantees that the condition is met for all subsequent values

of t under the computed DMA bandwidth bbmin.

V. EXPERIMENTAL EVALUATION

This section presents the empirical methodology we adopt

to measure the maximum DRAM bandwidths under CPU

and DMA regulation while still satisfying Equation 2. We

validate the architecture proposed in Section III and present

our overhead-aware schedulability experiments.

A. Measuring DRAM Saturation

We study the DRAM saturation point from the perspective

of the CPU and the DMA. Following a similar methodology

as [49], we first establish a relationship between the worst

DRAM stress generated by CPUs alone and then under various

MemGuard budget values. We then study the amount of

bandwidth extracted by the DMA from the memory subsys-

tem and its relationship to the corresponding QoS regulation

values. Finally, we investigate the combined contributions of

MemGuard and QoS regulation levels.

1) MemGuard Regulation and DRAM Utilization Using

CPU: In order to generate worst-case stress for the DRAM

controller from the CPU subsystem, we use our publicly avail-

able USTRESS benchmark [49]. USTRESS uses write access

patterns (which produces worse stress patterns than reads [26])

that miss in the L2 cache and access a closed DRAM row (row

miss) on the same bank. USTRESS can therefore maximize the

DRAM controller utilization. In fact, the bandwidth reported

by USTRESS progressively decreases when the benchmark

is (synchronously) executed on a progressively increasing

number of cores.

We adapted the DRAM geometry of the original benchmark

to the DRAM geometry of our Xilinx ZynqMP ZCU102.

On the ZCU102, through documentation and experimentation,

we found the DRAM organization to be three column shift

bits, two bits for the bank, two bits for the bank group,

and fifteen bits for the row. The combined bandwidth of

the cores when synchronously executing USTRESS remains

stable at approximately 960 MB/s, which is thus the maximum

bandwidth that can be extracted from the DRAM memory

subsystem at maximum utilization.

Next, we study the relationship between the maximum

bandwidth of the memory subsystem and the MemGuard

regulation values. As described in Section II, MemGuard

works by assigning each CPUk a regulation budget of Qk

cache refills per regulation period P . Qk is measured in

terms of L2 cache refills assessed via performance counters.

In our setup, MemGuard regulation period and budget values

are enforced by the Jailhouse hypervisor. Smaller P values

allow for a finer-grained CPU regulation at the expense of

increased overheads: an interrupt is generated and processed

by the hypervisor at every regulation period in order to

police the CPUs’ budgets. Prohibitively small P values would

cause MemGuard to misbehave due to excessive overheads.

We, therefore, conducted experiments to select the smallest

possible viable value of P for our setup (which represents

a worst-case scenario for MemGuard regulation strategy).

Furthermore, since we rely on the granularity of L2 cache-refill

performance counters for Qk, we also evaluated the minimum

Fig. 3. USTRESS bandwidth with increasing Qk and P = 30 µs.

Qk that can be feasibly enforced for a CPUk. Our empirical

results suggest that, with our setup, any value P < 30 µs and

any value Qk < 50 (at P = 30 µs) would cause MemGuard

to misbehave.5

In order to establish the relationship between maximum

memory bandwidth of the memory subsystem and MemGuard

regulation, we, therefore, set P = 30 µs and progressively

increase Qk starting from 50 while accessing the memory

subsystem using USTRESS. The results are presented in Fig-

ure 3, which shows a linear trend until the bandwidth reaches

960 MB/s at Qk = 225. This corresponds to the maximum

bandwidth the CPUs can extract from the DRAM at maximum

utilization.

2) QoS Regulation and DRAM Utilization Using DMA:

The ZCU102 has two DMA engines: the ADMA is cache-

coherent, whereas the GDMA is not. Both DMAs can be

QoS-regulated [57]. Since we assume cache-coherent DMA

transfers (see Section II), we used the ADMA engine in

our experiments. We configured the DMA burst length to

its maximum, i.e., 16, resulting in a 128 B transfer per

transaction. Once again, all the transactions always target the

same bank, but the sequential access pattern will produce

row hits. Without QoS regulation and any interference, the

bandwidth achievable from the DMA depends on the transfer

chunk size Sc. For Sc ∈ {4, 8, 16, 32, 64} KiB, we measured

a maximum throughput of approximately 2000, 2440, 2800,

3080, and 3190 MB/s, respectively.

The QoS supports different regulation modes [7] controlled

by a set of read (ar_r, ar_b, ar_p) and write parameters

(aw_r, aw_b, aw_p). By setting ar_b = aw_b = 1,

the parameters ar_r and aw_r are sufficient to enforce a

strict regulation at the specified ar_r (aw_r) level. In our

experiments, we always use ar_r = aw_r corresponding to

the QoS level ab described in Section II.

Figure 4 reports the DMA memory bandwidth for increasing

QoS regulation values ab = ar_r = aw_r and different

chunk sizes Sc when accessing the same DRAM bank. The

figure also shows the maximum theoretical bandwidth com-

puted using Equation 1, with the maximum transaction size

5Stressing the system using USTRESS with P < 30 µs caused consistent
discrepancies between measured and nominal bandwidth.

Fig. 4. DMA bandwidth for different sizes of Sc and QoS regulation values.

Sb = 128 B and the DRAM frequency fclk = 0.5 GHz. In

the least regulated cases ab = 250, the bandwidth differs

significantly depending on the chunk size. Thus larger Sc

chunk sizes are preferred when only minimal QoS regulation

is applied.

3) Combining MemGuard and QoS Regulation: The ap-

proach proposed in [49] to independently compute the Mem-

Guard regulation for the cores and QoS level for the DMA

–such that Equation 2 is satisfied– is not directly applicable

to our setup. On the ZCU102, we are unable to prioritize

DMA traffic over CPU traffic statically. When the CPUs are

active before a regulation event happens, they can temporarily

force the DMA below its assigned bandwidth due to the bursty

nature of MemGuard regulation. The lost bandwidth is not re-

covered due to the strict QoS regulation (ar_b = aw_b = 1).

Therefore, we empirically determine the different DMA and

CPU contributions: We consider three active CPUs and one

DMA. The CPUs are regulated via MemGuard at P = 30µs
and perform memory transactions using USTRESS. Starting

with a per-CPU MemGuard budget Qk = 50 and proceeding

step-wise towards higher Qk values, we generate decreasing

DMA traffic by controlling the QoS. For each Qk level, we

determine the maximum ab such that the CPU bandwidth

is unaffected by the presence of concurrent DMA transfers.

Once such Qk and ab levels are known, the DMA bandwidth

corresponding to this ab can be determined via Figure 4.6

Each combination (Qk, ab) identifies a point that satisfies

Equation 2 and results in the maximum utilization of the

DRAM.

Table I reports the different (Qk, ab) value points. For

example, when Qk = 150, the CPUs are heavily regulated, and

their bandwidth (220 MB/s) does not decrease even when the

DMA is not regulated (ab = 0 means that the QoS regulation

is disabled). On the contrary, for Qk = 210, any ab > 3 would

cause the CPUs bandwidth (308 MB/s) to decrease. Starting

from Qk ≥ 225, the CPUs are interfering with each other even

without any DMA-generated traffic.

6Given the observed delta between theoretical and experimental QoS to
bandwidth conversion, Figure 4 should be preferred to determine the effective
DMA bandwidth.

B. Implementation Overheads

We evaluate our implementation described in Section III-C

by measuring critical overheads and delays as well as VM-

to-VM event signaling (see Table II). We insert non-invasive

timestamping into our implementation. The timestamps are

read out during planned idle intervals of the system and

used to calculate the overheads. As a timing source, we use

the CPU’s system timer. It is synchronized across all cores,

which permits the measurement of cross-core notification

delays (∆BR). The measurements shown in Table II can be

directly mapped to actions marked in Figure 2. Our test system

employs two communicating VMs and four channels for two

bidirectional links between the VMs. The implementation of

the communication broker compiles to 4243 B of instructions

and 8904 B of data. Dynamically allocated memory never

exceeds 12288 B. Code and data fit into L1 caches for this

configuration, which validates our assumption that the broker

should not impact the memory bandwidth calculations. The

allocated 128 KiB L2 cache partition is sufficient to host

multiple communicating guests and channel configurations.

In our configuration 3264 B are used. Per additional channel

or VM we require additional 56 B or 1152 B, respectively.

Hypercall and IRQ-related experiments were run 1000 times.

Packet processing-related measurements are based on 4000

sent packets.

The derived overheads are used to bound the terms

Omin
s , Omax

s , Odma, Opckt,i, J
′
i , Or, as used in the analysis

in Section IV. The virtio device assigns a timestamp after

entering hypervisor mode and passing the PCI transport layer,

which yields (∆HC is round trip time):

Omin
s = ∆min

HC/2 + ∆min
PT . (19)

Omax
s = ∆max

HC /2 + ∆max
PT . (20)

The DMA overhead Odma includes all overheads at the broker

for steps 5 to 8 in Figure 2, except the the DMA transfer

time itself and the time Opckt,i to remove the packet from its

sender’s queue. Based on Table II, this results in:

Odma = m ·∆max
PS +∆max

PD +∆max
HC +∆max

IP +∆max
FT , (21)

where the overhead ∆PS of finding the packet with the earliest

deadline is paid m times because there are m per-VM queues.

Because of the ordered per-VM queues, the broker only has

to access the first element in each queue. This operation is

implemented lock-free. When the DMA finishes the transfer,

it will interrupt the broker, which results in an IRQ injection

done by the hypervisor ∆HC , and the processing of the

DMA interrupt by the broker ∆IP . At last, the broker notifies

the receiver and the sender by sending an IPI to each from

hypervisor mode ∆FT .

The IPI delay ∆BR is the time between the hypervisor

sending the IPI and the receiver finishing the IRQ processing.

The DMA overhead Odma considers the full hypervisor entry

and exit in ∆FT . However, the hypervisor exit is happening in

parallel to the IPI delay in ∆BR. To correct for the duplicate

TABLE I
DMA QOS REGULATION VALUES TO PROTECT CORES AT FIXED MEMGUARD BUDGET.

Total MemGuard
Budget

∑
Qk

Per Core Assigned
MemGuard Budget Qk

USTRESS Bandwidth (MB/s)
1 CPU only

USTRESS Bandwidth (MB/s)
with 3 CPUs and DMA

DMA Bandwidth (MB/s) @ QoS a
b

s.t. BW of CPUs unaffected

150 50 220 220 1074 @ QoS 0 (disabled)

165 55 244 244 649 @ QoS 60

180 60 264 264 485 @ QoS 40

195 65 286 286 148 @ QoS 10

210 70 308 308 47 @ QoS 3

225 75 330 318 No valid QoS possible

TABLE II
OVERHEADS AND DELAYS IN OUR IMPLEMENTATION (IN NANOSECONDS)

AND MAPPING TO COMMUNICATION FLOWS IN FIGURE 2.

Symbol
Actions

Fig. 2
MIN AVG MAX MED

Hypervisor entry & exit
(Sender OS to Hyp.)

∆HC 2 939 941 949 939

PCI transport layer
(Hyp.)

∆PT 3 111 295 757 292

Packet parsing (Hyp.) ∆PP 3 181 433 1161 424

Queue locking (Hyp.) ∆QL 3 71 98 142 101

Queue insertion (Hyp.) ∆QI 3 50 74 101 70

Queue find location for
insertion (per packet)
(Hyp.)

∆QA 3 24 26 30 26

Queue remove (Broker) ∆QR 8 20 33 40 30

Find packet with earliest
deadline (per VM) (Bro-
ker)

∆PS 5 20 32 71 30

Process packet and pro-
gram DMA (Broker)

∆PD 5 373 406 949 393

Finalize transfer incl. IPI
(Broker & Hyp.)

∆FT 8 2222 2350 2646 2353

DMA IRQ processing
(Broker)

∆IP 7 797 811 828 808

OS notification IPI + IRQ
processing by receiver
(Broker to Receiver OS)

∆BR 8 + 9 1370 1403 1460 1400

accounting of the hypervisor exit, we upper bound the receiver

notification delay as:

Or = ∆max
BR −

∆max
HC

2
. (22)

Note that we use the maximum for ∆HC because we offset

∆max
HC used in Odma.

The remaining terms Opckt,i, J
′
i involve adding and remov-

ing packets from priority queues; hence, it is necessary to

discuss the queue implementation. We use a linked list imple-

mentation for the priority queues that requires n comparisons

for a queue containing n elements. The time for insertion of

a packet by VMk without locking can be bounded using the

maximum amount of packets sent by VMk that can be pending

at any time. Under the assumption that a packet is schedulable,

it cannot be pending for longer than Di. Hence, given the set

Γk of flows that have VMk as their sender, the maximum

amount of pending packets sent by VMk is
∑

i⌈Di/Pi⌉ for

τi ∈ Γk and Γk ⊆ Γ. Thus, queue insertion is bounded by:

OQI,k = ∆max
QI +

∑

τi∈Γk

⌈Di/Pi⌉ ·∆
max
QA . (23)

Additionally, the priority queues are protected by a lock, so

the sender and the broker can be blocked for a short amount

of time. The lock is based on the Jailhouse implementation

of a spinning ticket lock, such that the blocking time with

two contenders can be bounded to the maximum duration the

contender spends holding the lock. Blocking due to the broker

is given by:

BB = ∆max
QL +∆max

QR . (24)

Blocking due to the sender is given by:

BS,k = ∆max
QL +Omax

QI,k. (25)

The time to remove a packet τi ∈ Γk from the queue of sender

VMk is then:

Opckt,i = BS,k +BB . (26)

Finally, we consider the release jitter. Our implementation

uses event signaling and lock-free access to the first queue

entry (the packet with the earliest deadline) such that the

maximum time between the assignment of the deadline on

VMk and the first instant where the broker can consider the

packet τi ∈ Γk in a scheduling decision is given by:

J ′
i = (∆max

PP +BS,k +BB) · |Γk| : (27)

for each packet insertion, the virtio device has to parse the

packet header and update the queue, for which it can be

blocked due to the broker modifying the queue. After the

insertion, the packet is immediately visible by the broker. The

multiplication term results from the capability of the virtio

driver to prepare and send more than one TX buffer with one

send operation (i.e., at most |Γk|). Additionally, a prior transfer

might have just started, so the packet can only be considered

after the completion of the prior transfer.

C. Schedulability Experiments

To assess the impact of the measured overheads, we gener-

ated synthetic flow sets and tested their schedulability based on

the analysis in Section IV. A flow set is generated as follows.

We first assign a maximum allowable DMA bandwidth bb

in MB/s, a number of VMs v, flows n, a packet size C,

and a desired system utilization (prior to overhead inflation)

U ∈ [0, 1]. We then randomly and uniformly generate a

utilization Ui for each flow [14], such that U =
∑n

i=1 Ui, and

compute the inter-arrival time Pi based on Ui = (C/bb)/Pi.

Each flow is randomly assigned to a sender among the v VMs.

Figure 5 shows the obtained results of the ratio of schedu-

lable flow sets for a system with v = 4 VMs where we

10 20 30 40 50 60 70 80 90 100

Utilization (before overhead)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
R

a
ti
o
 o

f
s
c
h
e
d
u
la

b
le

 f
lo

w
 s

e
ts

C = 4KB, n = 3

C = 4KB, n = 12

C = 4KB, n = 48

C = 12KB, n = 3

C = 12KB, n = 12

C = 12KB, n = 48

(a) DMA BW = 150 MB/s

10 20 30 40 50 60 70 80 90 100

Utilization (before overhead)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a
ti
o
 o

f
s
c
h
e
d
u
la

b
le

 f
lo

w
 s

e
ts

C = 4KB, n = 3

C = 4KB, n = 12

C = 4KB, n = 48

C = 12KB, n = 3

C = 12KB, n = 12

C = 12KB, n = 48

(b) DMA BW = 500 MB/s

10 20 30 40 50 60 70 80 90 100

Utilization (before overhead)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a
ti
o
 o

f
s
c
h
e
d
u
la

b
le

 f
lo

w
 s

e
ts

C = 4KB, n = 3

C = 4KB, n = 12

C = 4KB, n = 48

C = 12KB, n = 3

C = 12KB, n = 12

C = 12KB, n = 48

(c) DMA BW = 1000 MB/s

Fig. 5. Ratio of schedulable flow sets: 4 VMs, flows = {3, 12, 48}, packet size = {4, 12} KiB, and DMA bandwidth = {150, 500, 1000} MB/s.

vary the DMA bandwidth in {1000, 500, 150}, the number

of flows in {3, 12, 48}, and the packet size in {4, 12} KiB.

For each utilization point, we generated and tested 1000 flow

sets. Note that schedulability significantly improves as the

DMA bandwidth bb decreases. This is because the utilization

is computed based on the transfer time C/bb; for lower

values of bb, the transfer time becomes larger while the

overheads in Table II remain constant. Thus their impact on

the schedulability of the flow sets is reduced. Also, note that

the system performs better for a larger number of tasks and

packet size: as those parameters increase, the average period

of each task at a given utilization also increases, which lessens

the blocking effect due to the non-preemptive transfer of a data

chunk of size Sc = 4 KiB.

We also measured the time required to run the schedulability

analysis for 48 flows and a packet size of 12 KiB. We

implemented the analysis using (single-threaded) Matlab code

executed on an AMD Ryzen 5 3600 and obtained a median

of 0.34ms, mean of 4.9ms, 95th percentile of 8.0ms, and

maximum of 25.82s. This shows that the time required to

perform the analysis is small for most cases, even with a large

number of flows. Note that increasing the number of VMs

would not affect the complexity of the analysis.

D. Comparison

In Table III, we show a comparison of our implementation

and the schedulability analysis. We used binary search to

find the smallest period for which a single packet of a given

size can be transferred when the DMA is limited to a given

bandwidth, where the deadline is set equal to the period.

We ran the same scenario in our implementation for 1,000

iterations to obtain the maximum latency. We selected four

scenarios from the middle of the possible QoS ranges (QoS

40 and QoS 10, see Table I) to select viable combinations of

utilization and periods to run the experimental scenarios. As

Table III shows, the measurement of FreeRTOS confirms the

analytical limits.

VI. RELATED WORK

This work analyzes the problem of predictably copying data

among VMs and virtualized hardware resources on MPSoCs

TABLE III
COMPARISON OF IMPLEMENTATION (LATENCY) AND ANALYSIS (PERIOD)

FOR A UNIDIRECTIONAL FLOW WITH IMPLICIT DEADLINES.

Experiment FreeRTOS

DMA Size Latency Period Diff

(MB/s) (KiB) (ns) (ns) (%)

148 4 34,535 36,933 -6.5

148 12 99,818 103,171 -3.3

485 4 14,747 17,703 -16.7

485 12 42,777 45,480 -5.94

under consideration of maximum memory bandwidth and

memory interference. The issues of real-time data communi-

cation among different VMs have been tackled from different

angles with software- and hardware-based solutions.

a) Software-based solutions: Cache partitioning (e.g.,

MemGuard) [33] and bank partitioning [59] are well-known

techniques to mitigate and eliminate memory interference

among independent partitions on MPSoCs. Kloda et al. [31]

proposed a deterministic approach to carefully control the

architecture-specific address bits used at the cache and DRAM

level. In their work, I/O devices are statically assigned to only

one VM. Sohal et al. [49] leveraged the Quality of Service [7]

infrastructure offered by some ARM boards to create a reg-

ulating framework for system-wide bandwidth management

and control. Their work does not explicitly consider I/O nor

data transfer between VMs, but we adopt the same QoS

techniques to control DMA bandwidth in our architecture.

Tabish et al. [52] proposed a communication architecture for

strictly partitioned multicore processors. Their work considers

interference but only at the DRAM-bank level and does not ex-

plicitly address virtualized environments. Several works [20],

[25], [32], [36], [53] have addressed the problem of managing

I/O in the context of the Quest-V separation kernel. Although

real-time bounds on the I/O communication are provided, the

effect of memory contention and interference at interconnect

level is not explicitly considered. The MC2 project [19],

[30] implemented inter-core communication using a shared

DRAM bank. Their approach does not explicitly consider

virtualization and the use of a DMA engine to perform data

transfer. A recent work from Casini et al. [17] proposed a

hypervisor-based architecture that shares similarities with the

architecture provided by this work. Similar to this work,

their work formally analyzed the end-to-end latencies of I/O

data transfers under consideration of virtualization overheads.

However, the problems of memory-related interference, the

use of DMA to perform data transfers, and the real-time

scheduling of independent I/O flows are not considered by

their work. In addition, contrary to [17], this work uses the

virtio API [1], thus enabling unmodified execution of virtu-

alized OSs. Several real-time resource access protocols exist

to manage memory regions shared among VMs of different

criticality (we refer to [15] for a recent review). Compared

to our architecture, approaches based on shared memory are

much more difficult to configure, as they require a global

knowledge on the activation of tasks within different VMs

(knowledge that might not even be available to the system

integrator). Furthermore, these approaches require difficult to

produce certification artefacts to document the interplay and

mitigation strategies for the partition interference channels [46]

that they create. Pellizzoni et al. [41]–[43] proposed WCET

analytical bounds that explicitly consider I/O, but consider

neither memory interference nor virtualized environments.

The predictable execution model [40] and the scratchpad-

centric OS [51] propose a three-phase execution model to

address the predictability of execution and I/O phases. Several

works [2], [3], [45] have tackled the related problems of

latency and scheduling in network communication, and in both

the real-time and high-performance computing areas, works

exist that experimentally evaluate data transfer techniques in

virtualized environments (e.g., [6], [21], [48]). In [16], [18],

the memory interference on several NVIDIA-based SoCs has

been experimentally characterized.

In order to manage I/O complexity, several approaches –

although without any formal guarantee– are adopted in the

industrial world. For example, in the avionics domain, the

ARINC [5] standard mandates queuing ports to manage inter-

partition communication, and the Xen Hypervisor uses a split-

driver and ring buffer model [54] to multiplex I/O requests

coming from different VMs.

b) Hardware-based solutions: Compared to software-

only solutions, prototyping on hardware and/or FPGA is more

complex and time-intensive. Unsurprisingly, therefore fewer

hardware-based solutions exist. Jiang et al. [28], [29] proposed

the Virtualized Complicated Device Controller and MCS-IOV

hardware extensions to enable predictable virtualization of I/O.

Betti et al. [13] implemented FPGA hardware extensions to

manage I/O data transfers on COTS systems. IOMPU and

MPIOV [37], [38] are solutions that improve the management

of PCI-based hardware devices. SR-IOV [35] devices can

isolate different communication (network) flows. Contrary to

these works, our solution does not require extra hardware.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed and implemented a frame-

work to predictably transfer data between otherwise iso-

lated VMs and virtualized hardware resources on heteroge-

neous MPSoCs under consideration of memory contention.

The framework leverages standard mechanisms (e.g., cache-

partitioning and QoS regulation) to control memory interfer-

ence and is based on the observation that DRAM utilization is

additive when working below the saturation point. Thanks to

its virtio-based design, the framework can be directly used by

unmodified guest OSs. While in this paper we have evaluated

a lightweight implementation based on FreeRTOS, we plan to

investigate Linux virtio drivers in the future.

Our analysis of the communication flows supported by the

framework enables designers to bound the maximum band-

width assigned to cores and the DMA, and to meet the deadline

constraints of the flows while avoiding over-utilization of

the DRAM memory controller, thus causing unpredictable

latencies. Our evaluation has shown the matching of the

analysis and a low-overhead implementation realized on top

of the Jailhouse hypervisor with a baremetal broker VM and

FreeRTOS guests.

Our framework targets (certifiable) systems with different

VM criticalities. As such, the architecture does not adopt a

zero-copy approach, but it requires explicit copy operations

between VMs. However, each copy operation –and its implicit

interference– is controlled by a trusted broker component.

Given its lightweight implementation, the broker only mini-

mally extends the trusted codebase (and thus a certification

effort). On the other hand, this architecture devotes a core

(even if not necessarily an application core on an MPSoC)

to the broker functionality, and it requires to separate the

hypervisor-broker communication using cache partitioning.

There are multiple directions that we would like to in-

vestigate as future work. The current architecture benefits

from the use of a DMA engine to perform the data trans-

fer. However it would be interesting to investigate the size-

dependent trade-off between DMA programming and using the

broker’s CPU to perform the data copy actively. Additionally,

other data transfer architectures are possible. For example, the

broker VM can become superfluous by shifting the burden

of performing the data copy onto the sender or receiver VM.

Such architectures would require a different analytical model

than the one we currently adopted, making a comparison

between approaches even more challenging. Finally, extending

the model to consider multicast communication would be an

additional challenge.

ACKNOWLEDGMENTS

This work has been partially supported by the NSERC,

CMC Microsystems, and the National Science Foundation

(NSF) under grant numbers CNS 1932529, CNS 1815891.

Marco Caccamo was supported by an Alexander von Hum-

boldt Professorship endowed by the German Federal Ministry

of Education and Research. We want to thank Zubair Waheed

(an undergraduate at the University of Waterloo) for perform-

ing an initial performance estimation on the ZCU102 platform.

REFERENCES

[1] OASIS Committee Specification 01. Virtual I/O Device (VIRTIO) Ver-
sion 1.1. https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html,
April 2019.

[2] Laure Abdallah, Mathieu Jan, Jérôme Ermont, and Christian Fraboul.
Reducing the Contention Experienced by Real-Time Core-to-I/O Flows
over a Tilera-Like Network on Chip. In 2016 28th Euromicro Conference

on Real-Time Systems (ECRTS), page 86–96, 2016.

[3] Saeed Abedi, Neeraj Gandhi, Henri Maxime Demoulin, Yang Li, Yang
Wu, and Linh Thi Xuan Phan. RTNF: Predictable Latency for Network
Function Virtualization. In 2019 IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS), page 368–379, 2019.

[4] Siemens AG. Jailhouse hypervisor. https://github.com/siemens Ac-
cessed: 2021-02-08.

[5] Airlines Electronic Engineering Commitee. ARINC Specification 653
P1-5, 2019.

[6] Gabriele Ara, Luca Abeni, Tommaso Cucinotta, and Carlo Vitucci.
On the use of kernel bypass mechanisms for high-performance inter-
container communications. In Michèle Weiland, Guido Juckeland,
Sadaf R. Alam, and Heike Jagode, editors, High Performance Computing

- ISC High Performance 2019 International Workshops, Frankfurt,

Germany, June 16-20, 2019, Revised Selected Papers, volume 11887
of Lecture Notes in Computer Science, pages 1–12. Springer, 2019.
doi:10.1007/978-3-030-34356-9_1.

[7] ARM. ARM CoreLink QoS-400 Network Interconnect Advanced Qual-
ity of Service. https://developer.arm.com/documentation/dsu0026/latest
Accessed: 2021-02-08.

[8] ARM. ARM System Memory Management Unit Architecture Speci-
fication - SMMU architecture version 2.0. https://developer.arm.com/
documentation/ihi0062/latest Accessed: 2021-02-08.

[9] Sanjoy Baruah. The limited-preemption uniprocessor scheduling of
sporadic task systems. In 17th Euromicro Conference on Real-Time

Systems (ECRTS’05), page 137–144, 2005.

[10] Sanjoy K. Baruah, Rodney R. Howell, and Louis E. Rosier. Feasibility
Problems for Recurring Tasks on One Processor. Theor. Comput. Sci.,
118(1):3–20, September 1993.

[11] Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. Preemptively
Scheduling Hard-Real-Time Sporadic Tasks on One Processor. In In

Proceedings of the 11th Real-Time Systems Symposium, page 182–190.
IEEE Computer Society Press, 1990.

[12] Marko Bertogna and Sanjoy Baruah. Limited Preemption EDF Schedul-
ing of Sporadic Task Systems. Industrial Informatics, IEEE Transactions

on, 6:579–591, 12 2010.

[13] Emiliano Betti, Stanley Bak, Rodolfo Pellizzoni, Marco Caccamo, and
Lui Sha. Real-Time I/O Management System with COTS Peripherals.
IEEE Transactions on Computers, 62(1):45–58, 2013.

[14] Enrico Bini and Giorgio C. Buttazzo. Measuring the Performance of
Schedulability Tests. Real-Time Syst., 30(1–2):129–154, May 2005.

[15] Björn B. Brandenburg. Multiprocessor Real-Time Locking Protocols: A
Systematic Review, 2019. arXiv:1909.09600.

[16] Nicola Capodieci, Roberto Cavicchioli, Ignacio Sañudo Olmedo, Marco
Solieri, and Marko Bertogna. Contending memory in heterogeneous
SoCs: Evolution in NVIDIA Tegra embedded platforms. In 2020 IEEE

26th International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA), page 1–10, 2020.

[17] Daniel Casini, Alessandro Biondi, Giorgiomaria Cicero, and Gior-
gio Buttazzo. Latency Analysis of I/O Virtualization Techniques in
Hypervisor-Based Real-Time Systems. In 27th IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS 2021), 2021.

[18] Roberto Cavicchioli, Nicola Capodieci, and Marko Bertogna. Memory
interference characterization between CPU cores and integrated GPUs
in mixed-criticality platforms. In 2017 22nd IEEE International Confer-

ence on Emerging Technologies and Factory Automation (ETFA), page
1–10, 2017.

[19] Micaiah Chisholm, Namhoon Kim, Bryan C Ward, Nathan Otterness,
James H Anderson, and F Donelson Smith. Reconciling the tension be-
tween hardware isolation and data sharing in mixed-criticality, multicore
systems. In 2016 IEEE Real-Time Systems Symposium (RTSS), pages
57–68. IEEE, 2016.

[20] Matthew Danish, Ye Li, and Richard West. Virtual-CPU Scheduling
in the Quest Operating System. In 2011 17th IEEE Real-Time and

Embedded Technology and Applications Symposium, page 169–179,
2011.

[21] N. El-Sayed, A. Mukkara, P. Tsai, H. Kasture, X. Ma, and D. Sanchez.
KPart: A Hybrid Cache Partitioning-Sharing Technique for Commodity
Multicores. In 2018 IEEE International Symposium on High Perfor-

mance Computer Architecture (HPCA), pages 104–117, 2018.

[22] FreeRTOS. FreeRTOS Real-time operating system for microcontrollers.
https://www.freertos.org/.

[23] Laurent George, Nicolas Rivierre, and Marco Spuri. Preemptive and
Non-Preemptive Real-Time UniProcessor Scheduling. INRIA, RR-2966,
1996.

[24] Bosch GmbH. ETAS RTA Hypervisor. https://www.etas.com/en/
products/rta-vrte.php Accessed: 2021-02-08.

[25] Ahmad Golchin, Soham Sinha, and Richard West. Boomerang: Real-
Time I/O Meets Legacy Systems. In 2020 IEEE Real-Time and Embed-

ded Technology and Applications Symposium (RTAS), page 390–402,
2020.

[26] Mohamed Hassan. Reduced latency dram for multi-core safety-critical
real-time systems. Real-Time Systems, pages 1–36, 2019.

[27] International Standardization Organization. ISO 26262:2018(E) Road
vehicles — Functional safety, 2018.

[28] Zhe Jiang and Neil Audsley. VCDC: The Virtualized Complicated
Device Controller. In 29th Euromicro Conference on Real-Time Systems

(ECRTS 2017), volume 76 of Leibniz International Proceedings in

Informatics (LIPIcs), page 5:1–5:21, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[29] Zhe Jiang, Xiaotian Dai, Pan Dong, Ran Wei, Dawei Yang, Neil Audsley,
and Nan Guan. Towards an Analysable, Scalable, Energy-Efficient I/O
Virtualization for Mixed-Criticality Systems. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, page 1–1,
2021.

[30] N. Kim, S. Tang, N. Otterness, J. Anderson, F. D. Smith, and D. Porter.
Supporting I/O and IPC via Fine-Grained OS Isolation for Mixed-
Criticality Real-Time Task. Real-Time Systems, 56(4):349–390, 2020.

[31] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and
M. Bertogna. Deterministic Memory Hierarchy and Virtualization for
Modern Multi-Core Embedded Systems. In 2019 IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS), page 1–14,
2019.

[32] Ye Li, Richard West, Zhuoqun Cheng, and Eric Missimer. Predictable
Communication and Migration in the Quest-V Separation Kernel. In
2014 IEEE Real-Time Systems Symposium, page 272–283, 2014.

[33] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni. Real-time cache management framework for multi-core archi-
tectures. In 2013 IEEE 19th Real-Time and Embedded Technology and

Applications Symposium (RTAS), page 45–54, 2013.

[34] Clémentine Maurice, Nicolas Scouarnec, Christoph Neumann, Olivier
Heen, and Aurélien Francillon. Reverse Engineering Intel Last-Level
Cache Complex Addressing Using Performance Counters. In 2015

18th International Symposium on Research in Attacks, Intrusions, and

Defenses (RAID), volume 9404, page 48–65, 2015.

[35] Microsoft. Introduction to Single Root I/O Virtualization.
https://docs.microsoft.com/en-us/windows-hardware/drivers/
network/single-root-i-o-virtualization–sr-iov- Accessed: 2021-02-10.

[36] Eric Missimer, Katherine Missimer, and Richard West. Mixed-Criticality
Scheduling with I/O. In 2016 28th Euromicro Conference on Real-Time

Systems (ECRTS), page 120–130, 2016.

[37] Daniel Muench, Michael Paulitsch, and Andreas Herkersdorf. IOMPU:
Spatial Separation for Hardware-Based I/O Virtualization for Mixed-
Criticality Embedded Real-Time Systems Using Non-transparent
Bridges. In 2015 IEEE 17th International Conference on High Perfor-

mance Computing and Communications, 2015 IEEE 7th International

Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th

International Conference on Embedded Software and Systems, page
1037–1044, 2015.

[38] Daniel Münch, Michael Paulitsch, Oliver Hanka, and Andreas Herk-
ersdorf. MPIOV: Scaling hardware-based I/O virtualization for mixed-
criticality embedded real-time systems using non transparent bridges to
(Multi-Core) multi-processor systems. In 2015 Design, Automation Test

in Europe Conference Exhibition (DATE), page 579–584, 2015.

[39] NVIDIA. NVIDIA Jetson AGX Xavier. https://www.nvidia.com/en-
us/autonomous-machines/embedded-systems/jetson-agx-xavier/
Accessed: 2021-02-08.

[40] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John
Criswell, Marco Caccamo, and Russell Kegley. A Predictable Execution
Model for COTS-Based Embedded Systems. In 2011 17th IEEE Real-

Time and Embedded Technology and Applications Symposium, page
269–279, 2011.

[41] Rodolfo Pellizzoni, Bach D. Bui, Marco Caccamo, and Lui Sha.
Coscheduling of CPU and I/O Transactions in COTS-Based Embedded
Systems. In 2008 Real-Time Systems Symposium, page 221–231, 2008.

[42] Rodolfo Pellizzoni and Marco Caccamo. Toward the Predictable Inte-
gration of Real-Time COTS Based Systems. In 28th IEEE International

Real-Time Systems Symposium (RTSS 2007), page 73–82, 2007.
[43] Rodolfo Pellizzoni and Marco Caccamo. Impact of Peripheral-Processor

Interference on WCET Analysis of Real-Time Embedded Systems. IEEE

Transactions on Computers, 59(3):400–415, 2010.
[44] The Linux Foundation Projects. ACRN hypervisor.

https://projectacrn.org Accessed: 2021-02-08.
[45] Tao Qian, Frank Mueller, and Yufeng Xin. Hybrid EDF Packet

Scheduling for Real-Time Distributed Systems. In 2015 27th Euromicro

Conference on Real-Time Systems, page 37–46, 2015.
[46] RTCA Inc. RTCA/DO-178C Software Consideration in Airborne Sys-

tems and Equipment Certification, December 2011.
[47] RTCA Inc. Supporting Information for DO-178C and DO-278A,

December 2011.
[48] Ignacio Sañudo, Roberto Cavicchioli, Nicola Capodieci, Paolo Valente,

and Marko Bertogna. A Survey on Shared Disk I/O Management in
Virtualized Environments under Real Time Constraints. SIGBED Rev.,
15(1):57–63, March 2018.

[49] Parul Sohal, Rohan Tabish, Ulrich Drepper, and Renato Mancuso. E-
WarP: A System-wide Framework for Memory Bandwidth Profiling and
Management. In 2020 IEEE Real-Time Systems Symposium (RTSS),
2020.

[50] Marco Spuri. Analysis of Deadline Scheduled Real-Time Systems.
INRIA, RR-2772, 1996.

[51] Rohan Tabish, Renato Mancuso, Saud Wasly, Rodolfo Pellizzoni, and
Marco Caccamo. A real-time scratchpad-centric OS with predictable
inter/intra-core communication for multi-core embedded systems. Real-

Time Systems, 55, 10 2019.

[52] Rohan Tabish, Jen-Yang Wen, Rodolfo Pellizzoni, Renato Mancuso,
Heechul Yun, Marco Caccamo, and Lui Sha. SCE-Comm: A Real-Time
Inter-Core Communication Framework for Strictly Partitioned Multi-
core Processors. In 2020 9th Mediterranean Conference on Embedded

Computing (MECO), page 1–6. IEEE, 2020.

[53] Richard West, Ye Li, Eric Missimer, and Matthew Danish. A Virtualized
Separation Kernel for Mixed-Criticality Systems. ACM Trans. Comput.

Syst., 34(3), June 2016.

[54] Xen. Xen Split Driver Model. https://wiki.xenproject.org/wiki/
Xen Project Software Overview Accessed: 2021-02-08.

[55] Xilinx. Xilinx Versal. https://www.xilinx.com/products/silicon-
devices/acap/versal.html Accessed: 2021-02-08.

[56] Xilinx. Xilinx Xen Support with Cache-Coloring. https://github.com/
Xilinx/xen/commits/xilinx/release-2020.2. Accessed: 2021-02-08.

[57] Xilinx. ZCU 102 MPSoC TRM. https://www.xilinx.com/support/
documentation/user guides/ug1085-zynq-ultrascale-trm.pdf.

[58] H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni. PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms. In 2014 IEEE 19th Real-Time and Embedded Technology

and Applications Symposium (RTAS), page 155–166, 2014.

[59] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory
Bandwidth Management for Efficient Performance Isolation in Multi-
Core Platforms. IEEE Transactions on Computers, 65(2):562–576, 2016.

