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Abstract—As additional hardware in airplanes increases their
weight and in turn their fuel consumption, multi-core platforms
are an interesting potential solution to achieve more processing
capabilities onboard while avoiding carrying additional weight.
However, compared to single-core platforms, multi-core
platforms entail the additional price of requiring more complex
components with tailored timing and communication strategies
for the processes running on different cores at the same time.
This paper presents the developed strategies and the lessons
learnt from porting, deploying, and implementing on a multi-core
platform a recent cabin management software of an actual
passenger airplane and a security gateway for real-time
application. As no standards and best-practices exist in the
current industrial landscape, this work sets an important
industrial basis for implementing and deploying safety-critical
applications in multi-core environments.
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L. INTRODUCTION

There is a clear trend that future architectures of high-
performance data processing and computing will be multi-core
or even many-core processor platforms [1]. With increasing
integration due to weight saving requirements and increasing
needs of computing power due to functional integration,
avionics — the electronics in aircrafts — needs to adapt to multi-
core computing platforms as well. The need for functional
integration of systems and the addition of new functionality
(ideally without any additional weight) pushes processing
performance to its limits. An example is represented by the
various monitoring and support functions that have been
integrated recently into many aircrafts in order to release the
pilot from his routine tasks and improve airplane safety.
Furthermore, customers i.e., airlines and ultimately passengers,
constantly demand that more features —like high-definition in-
flight entertainment (HD-IFE), Cabin Wi-Fi, etc. [21]- be
available on airplanes.

However, the introduction of multi-core processing
platforms into avionics is not without risks as it poses
significant challenges at wvarious levels. On single-core
platforms, former issues of avionic architectures concerned
system-level  scheduling, communication links, and
communication delays. In today’s multi-core environments
those issues become challenges at operating system (OS) level.
We will outline this in more detail in the next section.

Nowadays, most of the costs for an airline are operational
costs like fuel. Recent experience has shown that modern
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system design approaches can save nearly one ton of
weight [2], which is a significant factor for saving fuel and
hence for reducing operational costs. Multi-core CPUs have the
potential to save even more Space, Weight and Power (SWaP),
which are sparse in aviation platforms.

The main contributions of this paper are the investigation
and evaluation of the influences from multi-core platforms into
the real-time scheduling of real-world industrial applications.
Such evaluations investigate multiple case studies that map
real-world applications from the aerospace domain to multi-
core processing platforms, and discuss the implications of
possible OS-related (in detail ARINC-653-related) timing
schemes and scheme changes that should be supported in the
future. We present sufficient requirements and challenges for
more flexible scheduling approaches in aviation systems.
Given that no industrial standards and practical scheduling
approaches exist so far for multi-core processors used in the
safety-critical aerospace domain, this work is unprecedented
and sets the basis for future development and discussions.

The analyzed case studies originate from porting an
experimental cabin management and monitoring system
(CMMS) and implementing a security gateway application on a
multi-core platform. Such real-world applications are
sufficiently challenging to evaluate different complex
alternatives for timing scheduling solutions within a real-time
OS. Our contributions will explain the lessons learnt and make
suggestions for future multi-core avionic systems and time-
partitioned OS architectures suitable for the avionics domain.
Although possible scheduling solutions have been covered in
literature for performance-oriented applications, the currently
adopted approach in the safety-critical domain — with statically
allocated execution slots as defined in the standard
ARINC 653 [26] — requires a considerable configuration effort
and is often not intuitive. Additionally, in order to minimize the
certification costs (which correlate to complexity), real-time
OS vendors adopt simple and lightweight solutions, thus
further reducing many deployment scenarios that may be
assumed straight forward in other domains.

The remainder of this paper has the following structure.
Section II describes background information on our work.
Section III gives an overview about the foundations of our
evaluation and related work. Section IV explains the
environment in which the evaluation has taken place. Section V
illustrates our evaluation scenarios before we present the
lessons learnt in Section VI. In the last section, we discuss
planed future steps, and conclude our work.



II. INTRODUCTION OF MULTI-CORE COMPUTERS TO
AVIONICS AND RELATED CHALLENGES

The introduction of multi-core systems in avionics causes
challenges where, due to safety regulations, independent
computing resources are still an important requirement. Shared
resources such as memory, busses, system level caches, and
chip input/output blocks — often praised as cost-saving factors
in consumer electronics — can pose significant challenges in
safety-driven computing cultures. A real concern is whether
full time- and space-partitioning — i.e., the segregation of
resources — can be guaranteed even in worst-case
scenarios [3][30]. Additionally, with the reduced feature sizes
of today’s multi-core production processes, single event effects
become more prevalent [15]. Only in recent years, the aviation
certification authorities such as the Federal Aviation
Administration (FAA) or the European Aviation Safety
Agency (EASA) have started clarifying their positions with
respect to complex electronics such as multi-core
processors [4]. Nevertheless, the need for more information
and experience with commercial off-the-shelf (COTS) multi-
core platforms and their influence on safety-relevant functions
is required in order to design hard real-time applications and to
certify those systems [8]. Several projects have started
gathering the required knowledge to allow future certification
of multi-core platforms (e.g., RECOMP [12], EMC2 [13],
ARAMIS [14][13]).

A second challenge is the migration of the currently used
aviation software architectures from single-core to multi-core
processors. Together with the transition from the federated
architecture (fedArch) to Integrated Modular Avionics
(IMA) [7], the transition to multi-core platforms can be clearly
considered another challenging industrial paradigm change. In
a fedArch, each system function uses its own resources i.e.,
each function utilizes a dedicated board (CPU, RAM, 1/O etc.).
IMA allows a better usage of computing resources: instead of
deploying one board per function, in an IMA architecture,
functions utilize a common, shared computing farm — which
includes I/O — and several logical functions are encapsulated in
so-called partitions. The most widely used OS standard for
IMA development is ARINC 653 [26], defining the Avionics
Application Standard Software Interface. This standard
describes a layered OS environment [5] where separated
partitions host different functionality with different criticality
levels. These partitions are virtual containers hosting separated
software. Each partition works on an individual subset of
system resources such as CPU cores, /0, and RAM. A strict,
a-priori known, static time scheduling controls the execution-
time of the partitions and allows to set hard real-time execution
constraints for every application. The first airplanes using an
IMA approach were the Airbus A380 and Boeing’s B777.
Nowadays, all modern airplanes —like the A350 or the B787—
have adopted IMA system architectures in combination with
ARINC 653-compliant OSs.

The next generations of airplanes will have to adapt multi-
core platforms in combination with IMA and ARINC 653.
However, this will force developers and system integrators to
change current software architectures, in particular their
communication models and scheduling processing schemes.
Another challenge when using partitioned systems in

combination with multi-core platforms is how to correctly
devise the time scheduling approach for several partitions, the
scheduling of all partitions together within one hyperperiod
(major time frame), and the partition time frame of parallel
executing partitions [10]. On a multi-core platform, partitions
will be executed in parallel and therefore, in order to allow an
optimized usage of resources and communication, the system
designer needs to find a suitable static time-scheduling schema
that fulfils the different timing requirements. Furthermore, on a
multi-core platform, communication between partitions is more
complex, since the software designer needs to respect the
different timings in combination with applications executed in
parallel. For example, he has to take into account how long a
message transfer requires to reach its destination partition
(possibly executing on a different core) to guarantee worst-case
timing requirements.

In order to fulfill all needed safety and security
requirements and therefore fulfilling the certification
requirements, while at the same time containing certification
costs, OSs need to reduce the configuration complexity of
systems deployed on multi-core platforms. Limiting the
possible timing schema options is a viable and very promising
approach to enable relative straightforward configurations and
to satisfy certification requirement. In section V, we present
and discuss the timing schema options that would fit both the
above configuration and certification requirements in the
context of a recent IMA cabin management software.

111. FOUNDATIONS AND RELATED WORK

This section explains all foundations and fundamentals of
the evaluation system, state-of-the-art, and used techniques.

A. Native Separation-support in OSs

Given the importance of ensuring time- and space-
segregated execution of partitions, it is fundamental to select an
appropriate execution environment for the partitions. A
microkernel-based OS meets this requirement by offering a
separation kernel with support for scheduling of active entities,
separation of memory and access control, separation of
external devices, interrupt handling, and inter-thread
communications. A microkernel-based OS is therefore the
natural platform for the evaluation presented in this paper.
Specifically, to practically discuss our approach we have
chosen SYSGO’s PikeOS (Version 3.2), which allows
asymmetric  multiprocessing (AMP) and symmetric
multiprocessing (SMP) [9] in combination with ARINC 653
partitioning [6]. SYSGO’s PikeOS is a commercially available
microkernel based real-time OS that provides hypervisor-like
virtualization capabilities and ensures strict time and resource
partitioning.

Separation is achieved in PikeOS through the concepts of
resource and time partitions. Resource partitions encapsulate
one or more tasks,' which in turn encapsulate one or more
threads that constitute the active scheduling entity in
PikeOS [25]. A resource partition in PikeOS is a container of a
set of physical resources and privileges for user applications —
implemented using one or more tasks or threads. In other
words a resource partition is a virtual-machine environment for

'A task identifies a separate address space shared by all threads assigned to it.



guest applications spacing from simple tasks to complete guest
OSs. PikeOS’ security and safety functionality lie in the ability
of strictly separating the physical resources assigned to a
resource partition.

Furthermore, each thread in PikeOS is assigned to a time
partition. Each resource partition can be assigned to one time
partition while each time partition can be associated with
several resource partitions. The relations are illustrated in
Figure 1. Processing time is allocated to time partitions and
threads inside one time partition share the allocated processing
time, which is defined by a static time-window-based
scheduling. [5]
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Figure 1: Relationship among resource and time partitions
in PikeOS. A Time Partition can comprise multiple time
slots, which form a Schema. A Schema contains therefore
several Time Partitions. Threads are assigned to Resource
Partitions, which in turn are assigned to Time Partitions.

An appropriate assignment of resource partitions to time
partitions allows to implement of the execution model implied
by the ARINC 653’s major time frame concept.”

B. Challenges of Scheduling a Multi-Core Systems

Today's IMA platforms typically use single-core processors
like the IBM 75x or Freescale MPC744X family. These
processors have a relatively simple caching and pipeline
architecture. Often, they are pure host processors requiring
separate bridge chips, which are specifically developed for an
individual airplane system. In contrast, most multi-core
processors are COTS components with complex instruction
pipelines, branch prediction, multi-level caches and cache
coherency modules with included I/O and DMA controllers.
These optimizations lead to better performance but lower the
timing determinism.

On a single-core processor, no thread parallelism is
allowed, while on a multi-core processor, parallel execution of
multiple threads is the normal case. This leads to interference
between applications running on different cores when hardware
resources are shared between the cores. Resource sharing is
detrimental for worst case performance: as shown in
Schliecker [19] and in Fuchsen [17], the performance of one
core can drop by 50% for specific applications if memory or

ZA major time frame is a repeating, fixed-length period during which each
partition is executed at least once; the major time frame is therefore a multiple
of the hyperperiod of all partition periods.

PCI bus is excessively used by other cores. Similar results are
shown in Nowotsch [3] for memory and platform-level caches.

Common multi-core processors have multi-level caches for
performance optimization and they use cache coherency
modules and crossbars to interconnect the cores. Software
running on different cores is therefore not executing
independently. Even in the absence of explicit software data or
control flows between cores, resource-coupling exists at
platform level due to shared hardware. A switch between
resource partitions comprises a context switch on the specific
cores. Caches are likely to have to be flushed and synchronized
for coherency.

C. Related Work

Carpenter et al. [22] described challenges and complexity
in theory and practice of scheduling in a safety-critical
environment, which is likely to run on a multi-core processor.
King [23] recently explained techniques, such as slack
partitioning and cached scheduling, for the usage in safety-
critical software on multi-core platforms. He argues that this is
a powerful approach as applications can utilize remaining
computing  bandwidth in a  systematic  manner.
Carnevali et al. [18] have presented a formal approach to
design and verify two-level hierarchical scheduling systems, as
used in ARINC 653. The approach includes all necessary steps
from design to development of real-time systems.
Schliecker et al. [19] introduced an analytical approach for
calculating worst-case response times in automotive real-time
system using tasks and shared resources. Nowotsch et al. 0
introduced an approach to manage multi-core Worst-Case
Execution Time (WCET).

Iv. CASE STUDY ENVIRONMENT

In this section, we explain the two systems we used to
evaluate time partitioning on multi-core  platforms.
Furthermore, this section introduces the used hardware and
software platforms.

A. Cabin Management System

The cabin management and monitoring system (CMMS) of
commercial passenger airplanes is the major controlling device
for functionalities like cabin light, crew communication,
passenger announcement, climate, water and waste etc. For the
enhancement of in-flight accommodation, airlines and
passengers recently demanded for more up-to-date
technologies such as Cabin Wi-Fi, HD-Inflight-Entertainment
Systems, or Cabin Video Monitoring. All such demanded
technologies need more processing power. DO-214 [20]
describes some of the minimum audio operational performance
requirements of a CMMS, which rise challenging time and
maximum communication delay requirements. Some of the
CMMS’s functions are safety-critical, i.e., the communication
between the cabin server and the end devices has to be
guaranteed. In order to guarantee communication in hard real-
time, currently one application periodically (<100us) sends
data to the end devices. Designing a timing scheduling for a
single-core platform is quite easily compared to a multi-core
platform. A CMMS system has several applications with
different WCETs. This generates several hundred safety
requirements that must be satisfied by the system. Although on



a single-core the time-scheduling is linear and clearly defined,
it is currently a challenge to devise an optimized time-
scheduling schema for new system configurations holding
around 30 cabin-related applications.

The mentioned trend of deploying more cabin functionality
onto one platform requires more computing performance.
Current systems use single-core CPUs. Increasing the number
of single-core computers to reach better performance would
require more space, power consumption and weight, with
undesirable impacts on the airplane. Multi-core platforms
would allow minimizing size and weight in both current and
future  systems. Leveraging a  multi-core-capable
ARINC 653 OS [27], a new cabin server architecture that holds
several functions integrated on one board is feasible and
desired.

B. Hardware Platforms

The new experimental CMMS we implemented as a case
study uses several Freescale MPC8641D CPUs with two ¢600
cores as evaluation platform. All CPU cards are using Ethernet
for inter-CPU communication. This experimental platform
implements only some important cabin functionalities, like the
cabin light and crew communication, with the intention to
evaluate a first version of a new ARINC 653 compliant multi-
core OS.

C. Software Platform

As discussed in section III, the OS chosen for our software
platform is SYSGO’s PikeOS 3.2. PikeOS offers AMP and
SMP support, complies with the ARINC 653 standard and is
certifiable according to DO-178b [24] at the required design
assurance level (DAL) (level B or C depending on CMMS
system architecture and application). Furthermore, it has been
already used in several safety-critical avionics devices.

V. EVALUATION SCENARIOS

In order to evaluate a multi-core test environment platform,
we have designed four scenarios based on already used
applications in the current CMMS. All scenarios are designed
for a dual-core CPU platform, which was chosen as
fundamental configuration for the next generation of
experimental CMMS. Furthermore, all scenarios use four
partitions. These partitions can have different WCET and hold
the implementation for a CMMS use case. It is important to
mention that the current application timings have been reused
without considering constraints given by the current OS. This
approach allowed to investigate the limits of current software
and hardware, and to make suggestions for the next generation
of CMMS systems. The analysis explicitly focuses on the
communication overheads entailed by the different solutions,
and on the trade-offs that are required due to the constraints
imposed by each solution. Please note that without restricting
the discussion and the presented solutions, for simplicity,
multirate systems (as defined in ARINC 653) are not discussed
in this paper.

A. Fixed Partition Time Frame Durations

The basic idea of the first evaluation scenario is to fix
execution times (partition time frames [10]) for all partitions on
both cores running at the same time. The time partitions are

defined as T1 and T2, whereby the amount of execution time of
T1 and T2 is variable. Our approach is using four (resource)
partitions (P1, ..., P4) on a dual core platform, so that every
core has assigned two partitions. These numbers of
applications were chosen by selecting a number of relevant
CMMS applications implementing basic cabin use cases. At a
given time, two partitions are executed in parallel and two
partitions are idle. The parallel-running partitions are assigned
to the same time partition, i.e., P1 and P3 are assigned to T1.
After the end of one time partition (e.g., T1), the cores switch
to the next partitions. This scenario requires that one pair of
partitions ends at the same time and that the partition change
must occur on both cores at the same time. illustrates the
mentioned scenario. In this figure, time is progressing
(cyclically) from left to right.

In this scenario, a communication within a pair (e.g.,
between P1 and P3 or P2 and P4) of partitions can be done
without large delays. A communication between P1 and P4
needs at most the complete duration of T1 to reach P4, and an
answer from P4 to P1 can require up to the duration of T2.
Thus, the overall communication would need, in the worst
case, T1 + T2. In this example, the major frame has a period
of 250ps (T1 + T2).
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Figure 2: Schema Fix Partition Time Frames

Due to the need of switching between T1 and T2 at the
same time on both cores, partition’s durations has to be
extended to the duration of the longest partition: if P1 has a
WCET of 125 ps while P3 requires only 100us, then P3 has to
be “extended” to 125us as well. Therefore, 25 ps of P3’s
execution on Core 2 will be not utilized (idle).

B. Individual Partition Time Frame Durations

This scenario uses one individual time frame for every
application, which is allocated to a resource partition. All these
partitions (P4, ..., P7) have a different WCET. In order to
allow different partition time frames on every core, every core
has an independent scheduling time schema and resource
partitions are assigned to independent time partitions (T3, ...,
T6). The different partition time frames on every core generate
different major time frames: P4 (assigned to T3) on core 1 has
a longer execution time than P6 (assigned to T5) on core 2.
From the perspective of the system designer both cores can be
seen as two independent CPUs. illustrates this scenario.



As an example, if the WCETs for T3, T4, T5, and T6 are
80us, S0us, 60us, and 60us respectively, then the major frame
on core 1 is 130us while it is 120us on core 2. This approach
influences the communication between partitions. The major
time frame of core 1 is 10us longer than the major frame on
core 2. After 12 time frame periods, core 2 has executed one
complete cycle more than core 1. A guaranteed direct
communication between two partitions is very complex in this
scenario. In a real deployment, there is the need of finding an
effective tradeoff between simplifying communication and a
reasonable, contained amount of idle time. A possibility would
be to maintain a global major period on both cores, with
different partitions executing on each core with different
periodicity. In the example above, this would lead to a global
major time frame of 130us with a 10us idle time on core 2.

Time-partition Periods on Core 1
[ 1
1 T3 T4 ]
| 1
Corel | P4 ps |!
] ]
- i~ r—=—=-=-"- I
Core2 | P6 : P7 |
| | 1
1 T5 | T6 1
e e e e e [ S, ! .
lo 60 80 120 130
Time-partition Periods on Core 2

Figure 3: Individual Partition Time Frames

C. One Application, Two or More Cores

The third evaluation scenario focuses on the timing of an
application using more than one core. This scenario is based on
the idea that an application needs more performance than those
achievable on one core only. Possible examples for this
scenario are image processing applications for video
monitoring, communication applications for cabin phone
conferences, or in general, parallelizable applications with very
short execution times (e.g., around 20us) and the requirement
of a high amount of processing power. In this case, one time
partition (T7) spans on all cores, and the single parallelizable
application is mapped on a single resource partition (P8),
allocated to both cores. The scenario is illustrated in Figure 4
(note that in the following figures, time is progressing from top
to bottom).

Core 1l Core 2

v P8 P8

Figure 4: Schema for one Application on two Cores

From communication point of view, this scenario is
straightforward: since the partition is executed on both cores, a
shared memory solution is an efficient solution for the
communication model. The major drawback of this solution is
that it is only applicable for those applications that can be
easily parallelized, while most of today’s legacy applications
are optimized for single-core execution. Furthermore, if
dynamic elements are used in the deployment of tasks on
different core, safety certification may become harder.

D. Security Gateway Use Case

In order to integrate more than one security domain
(potentially at different criticality) in a system, and allowing
the domains to securely communicate, a gateway (an additional
software application) can be used to control the data flow
between resource partitions in accordance with the system
security policy. To realize an appropriate scheduling of such a
gateway, two contradicting paradigms should be followed.
While on the one hand, the gateway should execute as little as
possible to avoid performance loss and allow to meet the
demanding real-time requirements of the controlled
applications, on the other hand, the whole system must remain
deterministic and secure. Thus, the gateway needs to process
the maximum amount of communication data within one
scheduling period.

On single-core architectures there are two possible
scheduling solutions. In the first solution, the gateway (P9) can
run in its own time partition that is scheduled directly between
the other communicating partitions (P10 and P11) —see . This
generates a complex time-scheduling schema and may lead to
some idling time overhead since the applications may not send
the same amount of data in each period. The second approach
is to “steal” processing time directly from the time-partition
that initiated the communication. This approach adds more
complexity to the WCET analysis of an application that is
required by the certification process of high-criticality
applications.

Core 1

I P9 (Gateway) l

P10

P9 (Gateway)

P11

Figure 5: Single-core scheduling with Gateway processing
time slot between application partitions

By using multi-core architectures it is possible to run the
gateway (P9) on one dedicated core concurrently with the
applications on other cores (P10 and P11) — see Figure 6.
Although this approach may under-utilize the core where the
gateway is allocated (as P10 and P11 do not continuously
exchange messages), a higher utilization of the gateway’s core
can be restored by allocating lower priority tasks (or non-real-
time tasks) on the same core. Thus, processing time will be
employed to process the low-priority background tasks that are
promptly interrupted by the gateway when a communication



takes place. Although appropriate to avoid under-utilized cores,
this approach could expose timing covert channel inside the
system, and therefore, it requires the background low-priority
tasks to be trustworthy.

A possible method to realize the described scheduling
behavior within PikeOS is to use the time partition TO. In
contrast to standard time partitions, threads assigned to TO are
always eligible to be scheduled concurrently with the threads
belonging to the current active standard time partition. The
eligible thread with the highest priority between the active
standard time partition and TO is scheduled on the core [5].
Hence, TO can be used for event-driven real-time applications
or applications without real-time requirements that can run
when higher priority threads have completed. This approach is
somewhat similar to the background server and slack
scheduling approaches (e.g., [28], [29]) for multi-core
platforms.

Corel Core 2

P9 P10
(Gateway) P11

Figure 6: Multi-core scheduling with Dedicated Core for
the Gateway

VL LESSONS LEARNT

In this section, we summarize the evaluation of the
scenarios mentioned in the last section. In order to evaluate the
scenarios, we implemented prototypes of the CMMS
applications and of the gateway application. The prototypes are
sufficient to demonstrate and evaluate the usage of multi-core
platforms and SYSGO’s PikeOS 3.2.

A. Fixed Time Frame Durations

The implementation of this scenario shows that it is very
challenging to find applications with the same or at least
compatible WCET. All implemented applications had very
different execution times and this generated high variance in
the time-partitions’ durations, leading to high idle times and
under-utilized cores. As a “worst-case” example, during the
implementation we faced the challenge of allocating on
different core monitoring applications with a WCET of 250us
to be run almost concurrently with an audio streaming
application with a WCET of 10ms.

An additional issue exposed by this solution is high latency
entailed by concurrently flushing caches on time-partition
switches on multiple cores. This is required to ensure the
correct initial conditions and deterministic execution of highly
safety-critical applications. Unfortunately, writing back caches
into memory on all the partitions at the same point in time
leads to longer write-back times due to concurrent use of the
common memory and buses resources.

Another difficulty was to deal with a periodic partition that
must execute after a specific amount of time. In this scenario, if

a periodic application is combined with a non-periodic
application, the non-periodic application must also be
scheduled when the periodic partition is activated. Although
this may seem a trivial task, most periodic applications have
either high or low priorities. Therefore, in case of low priority
periodic application, the system may waste computing time for
the unnecessary non-periodic application. The opposite
situation occurs in the case of high priority periodic
application, as the periodic application may be executed due to
the activation of the non-periodic one. In some cases, it is
impossible to combine non-periodic and periodic application
on the some core, because their scheduling requirements are
completely incompatible.

B. Individual Time Frame Durations

The idea of the second time schema scenarios or variants
thereof is currently not supported by any ARINC-653-
compatible OS. Nonetheless, this scenario is fully flexible and
would fulfill most of the needed requirements of application
designers. Every core has its own scheduling schema, and
time-partition assignment is independent on every core. One of
the main challenges is related to the communication between
applications assigned to different time-partitions on different
cores. The synchronization of such communication is very
challenging as each core may execute independent sequences
of time-partitions. The application designer is therefore forced
to closely monitor the timing of data transfer between different
applications. Such task is complex and hard to configure and
control as the major execution cycle of one core can be faster
than the cycle(s) of the other core(s). Therefore, in this
scenario, important and complex communications behaviors
are more difficult to implement. Another major challenge is the
current lack of precise WCET tools supporting applications
running within multiple ARINC 653 partitions [16]. This
makes the task of precise evaluation of the length of each
independently executing time partition even harder.
Improvement in this field would allow future systems to
calculate the best scheduling schema by using information
from applications and partitions.

C. One Application, Two or More Cores

As noted, the major difficulties of implementing this
scenario are related to the parallelization of legacy, already
certified, single-core applications. Furthermore, parallel-
executing threads are not independent from each other, and
may cause interference through, e.g., competing OS’s system
calls. Consequently, the timing of applications executing on
other cores is affected. Although interference on other
partitions and cores can be minimized by for example,
synchronizing partition scheduling on all cores, high WCET
penalties are unavoidable. It should be noted that newer
versions of PikeOS (e.g., version 3.4) enable a synchronized
partition switching on multiple cores, but such a feature was
not available when the implementation was carried out.

D. Security Gateway Use Case

In case of our gateway application, we clearly see the
potential benefit of using multi-core architectures for those
upcoming safe and secure system designs that adds data flow
controlling components. These gateway components need to
execute whenever a communication between two applications



belonging to differently classified security domains occurs. In
order to avoid changes of currently established single-core
scheduling schemas, the gateway can be processed on a
dedicated core. However, since we cannot determine for all
applications when communications exactly occur, the gateway
is required to be executed whenever a communication request
is initiated. To avoid the high utilization penalty of exclusively
using a core for the gateway only, an event-driven real-time
application should share the core with uncritical software (if
possible and available). PikeOS’ time partition TO is a possible
solution to operatively realize such a scenario and to deal with
otherwise unused idle time.

TO has been used as an always-active background time
partition. Since it can contain multiple resource partitions with
different priority levels, low-priority resource partitions (and
therefore applications) have been assigned to TO so that they
could be scheduled during the idle time of the other time-
partitions. The deterministic scheduling of other time partitions
is not affected and only spare, otherwise-idle time is spent for
low-priority resource partitions within TO. It should be noted
that high-priority event-driven resource partitions can be
assigned to TO as well to minimize the response time after an
event occurrence. In fact, such high priority partitions can
preempt any lower priority partitions (in both TO or in any
standard time-partitions) at any time thus ensuring fastest
possible response times. In case of this event/driven scheduling
the system architect has to evaluate the potential impact on
time determinism.

It should be noted that several challenges arose from the
use of the TO approach. In fact, although TO can guarantee the
execution time of a task, tasks and resource partitions assigned
to TO are preferred to equal-priority resource partitions
assigned to standard time-partitions. This may lead to potential
starvation of the resource partitions assigned to standard time-
partitions.

VII. FUTURE STEPS

The scenarios presented in the paper are the first step in a
long-term research project that aims to develop a new CMMS
version for future airplane generations. One of the next steps
will be the definition of new software architecture optimized
for ARINC 653 and multi-core platforms. A first proposal of
such architecture is presented in [11].

Furthermore, we identified some CMMS applications that
could be successfully parallelized to fulfill the scenario in
section V.C. Therefore, we have started to evaluate a four-core-
CPUs for the experimental CMMS with limited functionality.
To implement all original and new functions even more
resources are needed.

Our first evaluation has successfully shown that a multi-
core platform is able to hold more than the applications
currently required for a CMMS. In the next steps, we would
like to combine several other systems like video information
and passenger Wi-Fi network in one single multi-core
platform. However, this approach entails new security concerns
such as those implied by combining several different security
levels in one platform. In order to provide the highest security

level, we will have to define new methods and techniques on
the level of applications, OSs and hardware.

Strict time and space partitioning is one solution for dealing
with the arising security challenges. However, these
approaches can only prevent the leak of information of faulty
memory accesses or timing attacks. However, since in every
integrated system communication between partitions is
required, the needed communication channels would be
vulnerable to transfer secure data out of a security domain. An
integrated gateway solution for controlling the information
flow between partitions belonging to different domains similar
to the one presented in scenario in section V.D is a first step
towards securing such kind of communications. Finding multi-
core optimized software architecture and scheduling approach
for such gateways will be a challenging part of our future work.

Multiple accesses to 1/0 devices are additional complex
activities that will require further investigation. During several
tests, we discovered that the currently-in-use driver design has
to be improved to support multi-core platforms and partitions.
A clean driver interface is needed, which can control parallel
accesses from partitions.

It should be noted that not all the presented multi-core
design possibilities can be operatively realized with the
currently available hardware/software combinations. On the
one hand, due to the complexity of current multi-core platforms
with shared hardware components it is very difficult to
estimate accurate-WCET bounds that can be wused to
characterize the execution requirements needed by some of the
identified design solutions. On the other hand, limitations of
operating-systems such as the employed version of PikeOS
(version 3.2, still optimized for single-core solutions) still do
not offer adequate certifiable functionalities and means to
efficiently implement all the proposed design solutions.
However, newer and upcoming versions of OSs like PikeOS
(with new interfaces and improved tools) provides (e.g., in
PikeOS version 3.4) and will provide improved support for
some of the major constraints identified in the presented
scenarios. In particular, the ability of running individual time
partitioning schemes on separate cores with the upcoming
PikeOS version will allow to significantly simplify the porting
and the scheduling of avionics applications to multi-cores.

VIIL

In this paper we have presented the investigation of a multi-
core platforms usage in the context of a real-world safety
critical real-time environment with a strong focus on time
scheduling and communication behavior. The main goal of this
study was to better understand the operational difficulties and
opportunities involved in finding an optimal scheduling for
industrially-relevant real-time applications and to illustrate
potential approaches when such applications are implemented
and deployed on a multi-core platform. We have investigated
four scenarios that were derived from a real CMMS taken from
a state of the art Airbus plane. These scenarios can be seen as
challenging archetypes for most aviation applications in a
safety-critical real-time environment.

CONCULSION

For each of the investigated scenarios, execution time and
periods of the selected applications as well as communication



needs between them have been discussed. Our results underline
the challenges in migrating current avionics application designs
from single-core to multi-core platforms while preserving
appropriate time and space separation properties. For each
analyzed solution, the major drawbacks have been presented.

Furthermore, we have proposed ideas on how to optimize
software designs and communication models for future multi-
core systems, not only in the avionics field, but in other fields
with similar safety certification and performance requirements.
When dealing with upcoming multi-core safety critical
systems, an optimized solution for task distribution in a
certifiable real-time environment will require a combination of
system architecture, software architecture, operating system,
and communication modules and further joint development
efforts.
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