
The Case for Migratory Priority Inheritance in Linux:
Bounded Priority Inversions on Multiprocessors

Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS)

Campus E 1 5, D-66123 Saarbrücken, Germany
bbb@mpi-sws.org

Andrea Bastoni
SYSGO AG

Am Pfaffenstein 14, D-55270 Klein-Winternheim, Germany
abastoni@sysgo.com

Abstract

Linux’s real-time performance crucially depends on priority inheritance because—on uniprocessors—it limits
the maximum duration of priority inversion to one critical section per lock while ensuring that tasks remain fully
preemptable even when holding locks. Unfortunately, priority inheritance is ineffective on multiprocessors under
non-global scheduling (i.e., if some tasks may not execute on every processor) in the sense that it does not prevent
unbounded priority inversion in all cases. In fact, as shown in the paper, in a multiprocessor system with priority
inheritance, it is possible for a task to suffer from priority inversion as long as in a uniprocessor system without
priority inheritance. There is thus currently no predictable locking mechanism suitable for non-global scheduling
available in Linux, short of resorting to non-preemptive sections or other latency-increasing mechanisms such as priority
boosting. As multicore platforms are becoming more widespread in the embedded domain, this “predictability gap” on
multiprocessors limits Linux’s viability as a real-time platform.

In this position paper, it is argued that a simple tweak to the priority inheritance algorithm will restore its efficacy
on multiprocessors, without breaking POSIX compliance, increasing scheduling latency, or requiring large changes to
Linux’s scheduling and locking code. In a nutshell, under the proposed migratory priority inheritance mechanism,
inheritance is applied not only to scheduling priorities, but also to processor affinity masks. The need for migratory
priority inheritance and its benefits are explained in detail with a sequence of simple examples. Additionally, a prototype
implementation within the Linux kernel is described and potential challenges and simplifications are discussed.

1 Introduction

The PREEMPT RT patch has been instrumental in turning
Linux into a viable platform for demanding real-time ap-
plications. Crucially, the PREEMPT RT patch enables pri-
ority inheritance1 [39, 41] for virtually all in-kernel locks,
which ensures that real-time tasks are never delayed due
to locks accessed only by lower-priority tasks. As Linux
consists of many complex subsystems (of which real-time
tasks likely access only few), this isolation among real-
time and non-real-time tasks is essential to providing suit-
ably short response times in practice. More generally,
the combination of fixed-priority scheduling and priority

inheritance, as mandated by the POSIX real-time stan-
dard [2, 3], has seen tremendous success in uniprocessor
real-time systems because it is both analytically sound
and robust with regard to real-world engineering concerns.
For example, priority inheritance does not require the pro-
grammer to specify any additional parameters, it works
even if it is not known beforehand which locks a real-time
task is going to access, and it transparently allows real-
time tasks to share locks with non-real-time tasks (which,
in Linux, is unavoidable in kernel space).

Unfortunately, as we explain in detail in §3, classic
priority inheritance breaks down in certain scenarios in the
multiprocessor case. In particular, the desirable property

1 See §2 for a review of key concepts.

1



that the duration of priority inversion (reviewed in §2.2)
depends only on critical section lengths is not maintained
in all scenarios, even when using priority inheritance. An-
alytically speaking, this renders priority inheritance inef-
fective and unsound; practically speaking, this violates the
intuition and “best practices” that real-time application
developers have acquired over the last two decades.

While the multiprocessor priority inversion problem
has received considerable academic attention (see §6),
most solutions proposed in the literature make assump-
tions that are incompatible with the Linux kernel. For
instance, many require “priority boosting” of critical sec-
tions (reviewed in §3.3), which exposes real-time tasks to
delays from any critical section in the kernel.

In this position paper, we argue that a simple tweak
to Linux’s existing priority inheritance mechanism will re-
store both the analytical properties of priority inheritance
and developer expectations, without breaking POSIX com-
pliance or requiring large changes to Linux’s scheduling
and locking code. The key idea is that inheritance should
apply not only to scheduling priorities, but also to the
eligibility on which processors a task may execute, which
we refer to as “migratory priority inheritance.”

Migratory priority inheritance is a straightforward
generalization of Linux’s current locking semantics (it
reduces to priority inheritance on uniprocessors) with the
added benefit that it prevents unbounded priority inver-
sions on multiprocessors. Further, it ensures that tasks are
never delayed by locks accessed only by lower-priority
tasks, both analytically speaking and from the point of
view of a developer’s intuition (which, for Linux, is ar-
guably as important as analytical correctness).

In the following, we define migratory priority inheri-
tance and argue its benefits (§4) after first demonstrating
the shortcomings of both classic priority inheritance (in
a multiprocessor context) and priority boosting (§3). Ad-
dressing practical implementation concerns, we outline
how migratory priority inheritance fits into Linux’s exist-
ing inheritance implementation (§5). Finally, we relate
migratory priority inheritance to prior work on real-time
locking (§6). To begin with, we review the uniprocessor
case, which is already well-supported by Linux today.

2 Linux on Uniprocessors

Before explaining the shortcomings of priority inheritance
on multiprocessors, we need to establish the required real-
time scheduling and analysis background. In this section,
we briefly review uniprocessor scheduling fundamentals
(§2.1), give an example of “unbounded priority inversions”
(§2.2), and illustrate priority inheritance (§2.3). Readers
familiar with these concepts may safely skip ahead to §3.

2.1 Fixed-Priority Scheduling

Linux implements fixed-priority scheduling, where each
task is given a fixed numerical priority and tasks are sched-
uled in order of decreasing priority (in Linux, priorities
range from 99 to 1, with 99 being the highest priority). If a
task becomes available for execution (e.g., if new input be-
comes available) while a lower-priority task is scheduled,
the lower-priority task is preempted immediately and the
higher-priority task is scheduled instead. Fixed-priority
scheduling is a predictable real-time scheduling policy
and thus amenable to a priori analysis. In particular, given
a suitable model of the workload, it allows bounding the
worst-case response time for each task (i.e., the maximum
time required by the system to react to a particular input).

Sporadic tasks. The classic model of event-driven, re-
current real-time execution, and the one assumed in this
paper, is the sporadic task model [34, 36], in which the
execution of real-time tasks is modeled as a sequence
of jobs. Each real-time task Ti is characterized by three
parameters: a worst-case execution time (WCET) ei, a
minimum inter-arrival time pi, and a relative deadline di.
Each time that a task Ti is triggered (e.g., when new sensor
input becomes available), it releases a job, which must
complete within di time units. The WCET ei specifies
the maximum amount of processor time required by one
job of Ti to complete (i.e., a job of Ti must be scheduled
for at most ei time units within a window of di time units
after its release). Finally, the pi parameter specifies the
minimum separation between any two job releases of Ti.
For historical reasons, pi is also called the period of Ti.

In Linux, a sporadic task can be easily implemented
as an infinite loop in which the first statement of the loop
body causes the process to wait for an asynchronous event
(e.g., expiry of a timer, arrival of a network packet or sen-
sor input, etc.). In such an implementation, each iteration
of the main loop corresponds to one job, that is, a job
is released when the task resumes from the initial wait
statement, and completes when the task reaches the first
statement again to wait for the next event.

A job is said to be pending from its release until it
completes. While pending, a job is ready when the task
is available for scheduling and suspended otherwise. A
task’s maximum response time ri is the maximum time
that any of its jobs remains pending. To be deemed cor-
rect, the system must ensure that ri ≤ di for each task
Ti. To this end, response-time analysis [6, 29] is used to
bound the maximum response time of each task, and thus
to verify the temporal correctness of a system a priori.

Priority inversion. Response-time analysis is based on
the fact that lower-priority tasks normally do not delay
higher-priority tasks. Importantly, response-time analy-
sis assumes that a pending job is not scheduled (i.e., its
completion delayed) only if a higher-priority job is execut-

2



Task WCET Period Deadline Critical Section Priority

TA 6 20 7 99
TB 11 20 20 2 98
TC 6 200 70 97
TD 11 200 200 2 96

Table 1: Example task set consisting of four tasks (TA–TD). The task set is feasible on a uniprocessor under fixed-
priority scheduling if priorities are assigned in order of increasing relative deadlines (i.e., with deadline-monotonic
priorities [33]) and if priority inheritance is employed.

ing or if the job self-suspended due to locking-unrelated
reasons (e.g., due to I/O). A priority inversion exists when-
ever this assumption is violated. That is, any delays not
attributable to the scheduling of higher-priority tasks or
self-suspensions—if a task should be but is not scheduled
and the processor is idle or a lower-priority task is sched-
uled instead—are called priority inversions or blocking.
To determine safe upper bounds on worst-case response
times, it is essential to account for all possible blocking:
the maximum total duration of priority inversion must be
bounded and added to a task’s response-time bound.

In the following, we briefly illustrate the danger of
unbounded priority inversions, and how to control them
using priority inheritance.

2.2 Uniprocessor Priority Inversion

Consider a set of four sporadic control tasks TA–TD, of
which two have a maximum operating frequency of 50Hz
(i.e., a minimum inter-arrival time of 20ms) and two have
a maximum operating frequency of 5Hz (i.e., a minimum
inter-arrival time of 200ms), as given in Table 1. Note
that tasks TA and TC have constrained deadlines to en-
sure their timely completion (i.e., their relative deadline

is shorter than their minimum inter-arrival time), and that
tasks TB and TD share a resource (i.e., have shared state)
with an associated maximum critical section length of two.

The given task set is feasible on a uniprocessor using
fixed-priority scheduling with deadline-monotonic (DM)
priorities [33]. That is, the task set can be scheduled such
that all deadlines are met if priorities are assigned in order
of increasing relative deadlines (e.g., task TA is assigned
the highest priority, task TB is assigned the second-highest
priority, etc.). If all tasks were independent (i.e., if no tasks
were to lock shared resources), or if no contention arises,
then all deadlines are indeed met. However, excessive
blocking can arise if locks become contended.

Suppose that access to the shared resource is con-
trolled using a regular, real-time-unaware mutex. A possi-
ble schedule illustrating the risk of “untimely” job releases
is shown in Figure 1. In this and all later examples, only
a single job of each sporadic task is shown for the sake
of simplicity. In the depicted example schedule, task TB
misses its deadline at time 25 because it is indirectly de-
layed by the lower-priority task TC while waiting for task
TD to release the lock. Since TD has a lower priority
than TC , TB is indirectly delayed for the duration of the
entire execution of TC ’s job. This violates the intuition un-

scheduled

critical section

job release job completion

deadline job suspended

50 10 15 20 25 30 35

priority inversion

TD

TC

TB

TA

Figure 1: Example of an extended priority inversion on a uniprocessor in the absence of priority inheritance. Task TC
(priority 97) delays the completion of the lock-holding task TD (priority 96), which delays the higher-priority task TB .
A long priority inversion and a deadline miss at time 25 results. The depicted legend applies to Figure 2 as well.

3



50 10 15 20 25 30 35

priority inversion

priority inheritance

TD

TC

TB

TA

Figure 2: Example of priority inheritance on a uniprocessor. The lock-holding task TD is not preempted by task TC at
time 15 since it inherits the priority of task TB at the time. As a result, TB is able to meet its deadline at time 25 since it
is only briefly blocked. See Figure 2 for a legend.

derlying fixed-priority scheduling—a lower-priority task
should never delay a higher-priority task—and hence con-
stitutes a priority inversion. In total, TB incurs seven time
units of blocking in this example (from time 15 until time
22). As a result of the unexpected delay, the job misses its
deadline at time 25.

2.3 Classic Priority Inheritance

A classic way to control this well-known problem in
uniprocessor real-time systems is to employ priority inher-
itance [39, 41], where the priority of a lock-holding task
is temporarily raised to the maximum of its own priority
and that of any task that it blocks. While some amount
of priority inversion is fundamentally unavoidable when
using locks, priority inheritance ensures that the maximum
blocking due to each lock is bounded by the associated
maximum critical section length.

The benefit of bounding priority inversions to critical
section lengths is demonstrated by the example schedule
depicted in Figure 2. In the example, task TC does not
preempt task TD at time 15 since TD inherits the higher
priority of task TB while TD blocks TB . Task TD can
thus quickly finish its critical section (which causes it to
lose the benefit of priority inheritance) and ceases to block
task TB at time 16. As a result, all deadlines are met in
the depicted example, and, in fact, for any possible arrival
sequence of the considered task set.

With priority inheritance, priority inversions are con-
sidered bounded because their length depends only on
the maximum critical section length. In contrast, with-
out priority inheritance, priority inversions are potentially
unbounded since the maximum duration of priority inver-
sion then depends on entire job execution costs (recall
Figure 1), which are typically much larger than critical
section lengths (i.e., locks are typically only held for a
small fraction of a task’s execution).

This completes our review of uniprocessor real-time
scheduling fundamentals. To summarize, on uniproces-

sors, priority inheritance limits locking-related priority
inversion to one critical section (per accessed lock). Since
even otherwise independent tasks frequently contend for
locks when executing in kernel space, it is not surprising
that priority inheritance is in widespread use, and in fact
mandated by the POSIX standard [2, 3]. In Linux, priority
inheritance has been available since version 2.6.18 [19]
and is enabled by default for most kernel locks by the
PREEMPT RT patch. Linux is thus well-equipped for
hosting real-time workloads on uniprocessors. Unfor-
tunately, on multiprocessors, classic priority inheritance
does not bound priority inversions in all cases, which we
demonstrate with an example next.

3 The Predictability Gap

To motivate the need for multiprocessors, suppose that
the example system’s specification is updated to incorpo-
rate support for more-demanding operating environments.
Specifically, consider the case that tasks TC and TD are
now required to also support operating frequencies as high
as 50Hz (i.e., the periods of tasks TC and TD are shortened
to 20ms), with their relative deadlines scaled accordingly.
The resulting task set is summarized in Table 2.

Note that only the temporal constraints have been
tightened to reflect the increased maximum rate of events,
which does not affect the actual implementation—the
WCET parameters thus remain unchanged. The updated
task set is therefore no longer feasible on a uniprocessor.
That is, there does not exist a schedule such that all dead-
lines are met if all tasks simultaneously exhibit worst-case
behavior. Assuming that it is not possible to use a faster
uniprocessor (e.g., due to thermal, energy, or budget con-
straints), the only remaining option is to deploy the task
set on a multiprocessor consisting of at least two cores.

4



Task WCET Period Rel. Deadline Critical Section Priority Processor

TA 6 20 7 99 1
TB 11 20 20 2 97 1
TC 6 20 7 98 2
TD 11 20 20 2 96 2

Table 2: Example task set. The task set is feasible on two processors under P-FP scheduling if priorities are assigned in
order of non-decreasing relative deadlines (i.e., with deadline-monotonic priorities). Further, neither tasks TA and TC
nor tasks TB and TD may be assigned to the same processor.

3.1 Multiprocessor Scheduling

In the following, let us consider the case of partitioned
fixed-priority (P-FP) scheduling, where each task is stati-
cally assigned to one of the cores, on a dual-core processor.
From a scheduling point of view, partitioned scheduling re-
duces the multiprocessor system to a collection of unipro-
cessors, albeit with locking dependencies among the cores.
Besides the reduction to uniprocessor scheduling, parti-
tioned scheduling has many advantages in practice (max-
imal cache affinity chiefly among them) and is thus in
widespread use. In Linux, partitioned scheduling corre-
sponds to assigning each task a processor affinity mask
with only a single bit set.2

Diametrically opposed to partitioned scheduling is
global scheduling, where each task may execute on each
processor. As we will revisit later, global scheduling is
the only multiprocessor real-time scheduling variant under
which classic uniprocessor priority inheritance works as
expected and reliably limits maximum blocking. However,
global scheduling is generally subject to higher overheads
and, at least anecdotally, less commonly used in practice.
In the remainder of this paper, we restrict our focus to
P-FP scheduling, which is inarguably relevant to Linux
since it is officially supported by Linux (by means of the
processor affinity mask API).

As an aside, it is of course also possible to configure
hybrid scheduling policies that combine aspects of both
partitioned and global scheduling. For example, under
clustered scheduling [8, 18], the set of processors is di-
vided into non-overlapping subsets (or clusters) and each
task is assigned to one of the clusters. For the purpose of
this paper, all non-global scheduling policies (including
partitioned and clustered scheduling) are alike in the sense
that classic priority inheritance is not sufficient in all cases;
we thus focus on the simpler P-FP case.

Processor assignment. Assuming P-FP scheduling, let
us first consider the assignment of tasks to processors.
Since both task TA and task TC have only little slack (i.e.,
the difference between the relative deadline and the worst-

case execution cost is only one millisecond), it is clear
that the two tasks must be assigned to different proces-
sors. Similarly, tasks TB and TD must also be assigned
to different processors since each requires up to eleven
milliseconds of processor service within a scheduling win-
dow of 20 milliseconds. As a result, the only feasible
way to partition the task set is to create two symmetric
partitions, consisting of tasks TA and TB and tasks TC
and TD, respectively (swapping tasks TA and TC or tasks
TB and TD does not substantially change the assignment
since each pair of tasks has identical parameters).

Priority assignment. Next, consider the choice of pri-
orities. When comparing the slack of tasks TA and TC
with the WCET of tasks TB and TD, it is obvious that TA
and TC necessarily require higher priorities than TB and
TD. Since TA and TC reside on different processors, the
highest and second-highest priority may be assigned to
either one; the same applies to TB and TD with regard to
the remaining priorities.

The two preceding observations lead to the processor
and priority assignment summarized in Table 2: tasks TA
and TB are assigned to processor 1 (indicated by white
“boxes” in Figures 3–7) and tasks TC and TD assigned
to processor 2 (indicated by gray “boxes” in Figures 3–
7). Further, task TA has the highest priority, task TC has
the second-highest priority, task TB has the third-highest
priority, and task TD has the lowest priority.

It is important to realize that the processor assign-
ment and scheduling priorities were not chosen arbitrarily.
Rather, all other priority and processors assignments are
infeasible, or identical apart from renaming. In contrast,
the priority and processor assignment given in Table 2 is
feasible, that is, it is possible to schedule the task set such
that all deadlines are always met. However, this is not
the case when employing classic priority inheritance, as is
illustrated next.

2 A processor affinity mask specifies the set of processors that a task may be scheduled on (represented as a bit string). Processor affinity masks are
not part of the POSIX standard, but are supported in various forms by most UNIX-like real-time operating systems. In Linux, a task’s processor
affinity mask is specified using the sched setaffinity(2) system call.

5



scheduled critical section

Processor 1
job release job completion

deadline job suspendedProcessor 2

50 10 15 20 25 30 35

priority inversion

TD

TC

TB

TA

Figure 3: Example of an extended priority inversion under P-FP scheduling despite priority inheritance. Task TD is
not scheduled despite inheriting TB’s priority since a local task, TC , has still higher priority. Nonetheless, task TB
suffers a priority inversion while waiting since no higher-priority task is scheduled on its processor. See Table 2 for task
parameters. The legend applies to Figures 4–7 as well.

3.2 Priority Inheritance is Ineffective

Consider the example shown in Figure 3, which depicts a
schedule of the task set given in Table 2 assuming classic
priority inheritance is applied across processors (as it is in
Linux today). Note that task TB misses a deadline at time
20, despite priority inheritance, and despite the fact that
the total processing capacity was doubled to accommodate
the increased demand. This failure arises because task TB
is blocked from time 10 until time 17 while waiting for the
lock that task TD acquired at time 9. Task TB incurs such
excessive blocking despite priority inheritance because
its assigned priority is lower than that of task TC (and
necessarily so; if task TB’s priority were higher than that
of task TC , then task TC could miss a deadline instead).
Task TB’s delay constitutes a priority inversion since no
higher-priority task is scheduled on task TB’s processor
while it waits (i.e., from the point of view of response-time
analysis, task TB should be scheduled, but it is not). In
fact, task TB’s delay even constitutes an unbounded prior-
ity inversion because its length depends on the WCET of
TC (and not just on the critical section length).

Further, when comparing Figure 3 with Figure 1, it
is apparent that, in the multiprocessor schedule with pri-
ority inheritance, task TB incurs as much blocking as in
the uniprocessor example without priority inheritance!
The purpose of a real-time locking protocol is to ensure
bounded blocking in all cases, but as demonstrated above,
classic priority inheritance under P-FP scheduling fails to
bound priority inversions in some cases: classic priority
inheritance is ineffective under partitioned scheduling.

Recall that the priority and processor assignment
given in Table 2 was not chosen arbitrarily; rather, it is the
only feasible choice for the example task set (apart from
renaming, which does not alter the resulting schedule).
Yet it is not possible to correctly schedule it in all cases

using priority inheritance. This demonstrates that classic
priority inheritance—as currently implemented in Linux,
and made default by the PREEMPT RT patch—is not the
best choice for partitioned scheduling.

3.3 The Classic Solution: Priority Boosting

It has long been known that priority inheritance alone is
not sufficient to ensure bounded blocking in all cases, and
several alternative real-time locking protocols for parti-
tioned scheduling have been proposed in the literature (see
§6 for a review). Common to all of the proposed proto-
cols is that they avoid unbounded priority inversions with
priority boosting [38–40]. Under priority boosting, the
priority of a lock-holding task is unconditionally raised
above that of other, non-lock-holding tasks. As a result, it
is not possible for tasks to be preempted by newly-released
jobs, which in turn ensures that locks are released quickly.

Priority boosting is illustrated in Figure 4, which
shows a schedule of the same scenario as in Figure 3, but
this time assuming that tasks are priority-boosted while
holding locks. Note that task TC cannot preempt task TD
at time 10 even though TC normally has higher priority.
Since task TD is holding a lock, it benefits from priority
boosting and thus remains scheduled until it finishes its
critical section at time 11. As a result, task TB is blocked
only briefly and completes before its deadline.

3.4 Increased Scheduling Latency

Given that the earliest shared-memory multiprocessor
locking protocol based on priority boosting—namely, the
classic multiprocessor priority-ceiling protocol (MPCP)
[38, 39]—was proposed more than 20 years ago, why have
such protocols not yet caught on as the de facto “default”

6



50 10 15 20 25 30 35

TD

TC

TB

TA

priority inversion

priority boosting

Figure 4: Example of priority boosting under P-FP scheduling. Note that of task TD’s critical section is not interrupted
by the activation of task TC at time 10 since TD’s priority is elevated while holding a lock. See Figure 3 for a legend.

choice? We believe the reason is that priority boosting is
a rather “disruptive” progress mechanism, as uncondition-
ally expediting the completion of lock-holding jobs comes
at the expense of delaying other, possibly much more ur-
gent jobs. This indiscriminate delaying of higher-priority
jobs can result in increased scheduling latencies and re-
sponse times, thus significantly reducing the real-time
capabilities of the system.

The potential for deadline misses due to priority boost-
ing is illustrated in the example schedule shown in Fig-
ure 5, which shows a schedule resulting from a problem-
atic arrival sequence of the task set previously shown in
Figure 4. In the depicted example, the two higher-priority
tasks with short deadlines, TA and TB , arrive just after
task TD has acquired a lock. Task TC on processor 2
arrives shortly after TD became priority boosted at time 4
and thus is not scheduled until time 6, when the normal
priority of task TD is restored. This increase in scheduling
latency exceeds TC’s slack; a deadline miss thus results.
Task TA on processor 1 also misses its deadline at time 12,
but for a slightly different reason. It arrives while TB is
suspended and thus is scheduled right away. However,
when TB resumes at time 6, it is now holding a lock and
thus benefits from priority boosting. Hence it preempts TA
(the task with the highest unboosted priority) and delays it
by two milliseconds. Here, TA incurs a priority inversion
even though it does not require a lock.

This side effect of priority boosting makes it problem-
atic for the Linux kernel: since priority boosting affects
all locks (or at least all locks accessed by real-time tasks),
it exposes real-time tasks to delays from potentially any
critical section within the Linux kernel (or possibly even
user-space tasks). This is only a viable option if all critical
sections in any part of the kernel are known with certainty
to be so short as to not cause significant delays. Given
Linux’s large, complex, and rapidly changing code base,
this is not a realistic assumption to make. Instead, we
argue that a simple tweak to priority inheritance could
restore its efficacy under partitioned scheduling without
introducing any of the downsides of priority boosting.

4 The Case for Migratory Priority
Inheritance

It is easy to see why priority boosting is problematic—
priority boosting essentially turns critical sections into
non-preemptive sections—but why exactly is priority in-
heritance ineffective? As we explain in the following, the
root cause is that it is meaningless to compare priorities
across partitions (from an analytical point of view).

On a uniprocessor, the key guarantee provided by clas-
sic priority inheritance is the following: if a priority inver-
sion exists, then (one of) the lock-holding task(s) directly
or indirectly responsible for the blocking is scheduled
(assuming the absence of deadlock and that lock-holders
do not suspend for locking-unrelated reasons). This is
because a priority inversion exists only if a waiting task
has a higher priority than all currently ready tasks; due to
(transitive) priority inheritance, the blocked task’s priority
is made available to a lock holder, which is consequently
scheduled without delay. In other words, priority inher-
itance establishes an analytical link between processor
availability and priority inversion.

On a non-globally-scheduled multiprocessor, this
property breaks down: it is possible for a lock holder
to be preempted even though a blocked task is incurring a
priority inversion at the same time (recall Figure 3). There
is thus no link between processor availability and priority
inversion, which renders it ineffective from the point of
view of worst-case analysis. The reason for this discon-
nect is that the processor on which the priority inversion is
incurred (i.e., the processor that would be available) may
not be the one on which the lock holder resides. That is,
on a multiprocessor, a priority inversion still signals the
availability of a processor (with respect to the blocked
task’s priority level); however, if the lock holder may not
migrate to the available processor(s), then an unbounded
priority inversion may still arise.

As an aside, this dependence on task migration ex-
plains why classic priority inheritance is effective under

7



50 10 15 20 25 30 35

TD

TC

TB

TA

priority inversion

scheduling latency

Figure 5: Example of increased scheduling latency and blocking due to priority boosting under P-FP scheduling. Task
TC misses its deadline because the processor is occupied by a priority-boosted task when its job is released, which
causes it to suffer increased scheduling latency. See Figure 3 for a legend.

global scheduling—under global scheduling, lock holders
may always migrate to all processors, which restores the
link between processor availability and priority inversion.

4.1 A Simple Solution

The above considerations show that task migration is nec-
essary to some extent if unbounded priority inversions and
priority boosting are both to be avoided. However, short of
resorting to global scheduling, what can be done to restore
the efficacy of priority inheritance on multiprocessors?

We propose the following solution: augment priority
inheritance with processor affinity mask inheritance. That
is, inheritance should not only pertain to scheduling prior-
ity, but should also extend to the eligibility to execute on
a particular processor. For brevity, we refer to the combi-
nation of priority inheritance and processor affinity mask
inheritance as migratory priority inheritance.

Migratory priority inheritance works as follows. Let
πx denote the assigned priority of a given task Tx, and
let Mx denote the processor affinity mask of Tx (i.e., Mx

is the set of processors that Tx has been assigned to). If
Tx is blocked by another task Ty, then Ty inherits Tx’s
eligibility tuple (πx,Mx), with the interpretation that Ty
may execute on any of the processors included inMx with
priority πx. The inherited eligibility tuple takes effect in
addition to all other inherited eligibility tuples (if any) and
Ty’s own eligibility tuple (i.e., Ty may always execute
with priority at least πy on any of the processors in My).

To be precise, the effective scheduling parameters of
a task Ty are determined as follows. Let Ey denote the
set of eligibility tuples currently inherited by Ty (if any,
including all tuples available due to transitive inheritance).
Then Ty’s effective processor affinity mask M ′

y is the set
of processors

M ′
y ,

⋃
{Mi | (πi,Mi) ∈ Ey ∪ (πy,My)} .

Paraphrased, under migratory priority inheritance, a task

may execute on any processor that it or one of the tasks
that it blocks is eligible to execute on.

Further, on each processor p ∈ M ′
y, the effective

scheduling priority π′
y,p of Ty is defined as follows:

π′
y,p , max{πi | (πi,Mi) ∈ Ey ∪ (πy,My)

∧ p ∈Mi}.

In other words, priority inheritance is applied on a per-
processor basis such that a task may have a different prior-
ity on each processor that it is eligible to execute on.

At any time and on each processor p, the task eligi-
ble on p with the highest effective priority on processor
p is scheduled unless it is already scheduled elsewhere
(i.e., Linux’s usual push/pull semantics are applied with
regard to effective priorities and processor affinity masks).
While the focus in this paper is P-FP scheduling (where
each Mx contains only a single processor), the presented
mechanism seamlessly works with arbitrary processor
affinity masks, and reduces to classic priority inheritance
on uniprocessors and under global scheduling.

Most importantly, it can be shown that migratory pri-
ority inheritance is analytically sound and predictable: it
limits priority inversions in all cases, which we illustrate
with examples next, and can thus be used to determine
bounds on worst-case blocking a priori.

4.2 Bounded Priority Inversion

The schedule in Figure 6 demonstrates that migratory pri-
ority inheritance is effective at bounding priority inversion
without inducing blocking in higher-priority tasks. The
schedule shows the same arrival sequence as in Figure 3
(which assumes classic priority inheritance), but assumes
that migratory priority inheritance is used instead. Note
that, at time 10, the lock-holding task TD is immediately
preempted by the arrival of the higher-priority task TC ,
thereby shielding task TC from incurring any additional

8



50 10 15 20 25 30 35

TD

TC

TB

TA

priority inversion

migratory priority inheritance

Figure 6: Example of migratory priority inheritance under P-FP scheduling. When task TB becomes blocked on task
TD at time 11, TD inherits TB’s processor affinity mask and thus is able to migrate to processor 1 to complete its critical
section without further delay. See Figure 3 for a legend.

delays due to unrelated critical sections. As a result, task
TC completes in time.

Migratory priority inheritance takes effect when task
TB becomes blocked on task TD at time 11. Under migra-
tory priority inheritance, TD is now eligible to execute on
processor 1 with priority 97 (task TB’s priority) since task
TD inherits task TB’s processor affinity mask in addition
to task TB’s priority, and also on processor 2, but only
with priority 96 (task TD’s own priority) since task TB’s
priority is only valid on processors included in task TB’s
processor affinity mask. Task TD thus migrates to proces-
sor 1 where no higher-priority task is currently ready. This
allows TD to finish its critical section at time 12, which
causes it to stop inheriting TB’s processor affinity mask
and priority. Task TD thus becomes ineligible to execute
on processor 1 and is migrated back to processor 2 (where
the higher-priority task TC is still executing). Since mi-
gratory priority inheritance ensures the timely completion
of TD’s critical section, TB is blocked only briefly from
time 11 until time 12 and completes before its deadline.

In general, migratory priority inheritance ensures that
the maximum priority inversion (per lock access) is lim-
ited to the length of one critical section, thereby offering
a progress guarantee similar to priority inheritance on
uniprocessors. As in the uniprocessor case, this guarantee
derives from the definition of priority inversion. Recall
that a suspended task suffers priority inversion only if no
higher-priority task is scheduled (with respect to some
processor included in its processor affinity mask). This
implies that, due to processor affinity mask inheritance,
the blocking task is eligible to execute on a processor on
which, due to priority inheritance, its effective priority is
sufficient to be scheduled without delay.

4.3 Unaffected Worst-Case Latency

A key property of priority inheritance on uniprocessors
is that a task is never delayed due locks accessed only by

lower-priority tasks. It is this very property that priority
boosting lacks and which causes the detrimental increase
in worst-case scheduling latency discussed in §3.4. In con-
trast, this isolation of high-priority tasks from low-priority
activity is maintained under migratory priority inheritance.

This is demonstrated by the example depicted in Fig-
ure 7, which shows the same arrival sequence as in Fig-
ure 5 assuming migratory priority inheritance instead of
priority boosting. The benefits of migratory priority inheri-
tance are immediately apparent as no deadlines are missed.
In particular, both tasks TC and TA incur no delays when
they are released at times 4.5 and 5, respectively. Further,
note how task TD progresses in the execution of its criti-
cal section whenever at least one of the two processors is
available: initially, TD starts execution on (its assigned)
processor 2 at time 4, but when it is preempted by TC
at time 4.5, TD migrates to processor 1. At time 5 TD
is again preempted since, with the arrival of TA, there is
no longer a priority inversion (TB is still suspended, but
it is no longer the highest-priority task on its processor
and thus would not be scheduled even if it were ready).
Finally, at time 10.5, TD migrates back to processor 2
when its assigned processor becomes available.

Overall, this example shows that migratory priority in-
heritance ensures the rapid completion of critical sections
that cause priority inversions without imposing undue de-
lays on independent higher-priority tasks.

4.4 Fast Path and Overheads

An important concern in practice is implementation effi-
ciency in the common case. That is, while worst-case per-
formance is clearly important in real-time systems, many
applications hosted on Linux demand both real-time pre-
dictability and high throughput. With regard to the latter
requirement, it is important for the common, uncontended
case to be as efficient as possible.

Common-case efficiency is another weak point of pri-
ority boosting since it requires effective priority changes

9



50 10 15 20 25 30 35

priority inversion

migratory priority inheritance

TD

TC

TB

TA

Figure 7: Example of migratory priority inheritance under P-FP scheduling. Since migratory priority inheritance takes
effect only while a task suffers a priority inversion, it does not increase the scheduling latency of higher-priority tasks.
See Figure 3 for a legend.

for each critical section, which involves system calls in
Linux. In contrast, migratory priority inheritance takes
effect only when there is contention and does not require
any kernel involvement in the common, uncontended case.
It is thus fully compatible with Linux’s futex interface.3

The only overhead increase (compared to regular pri-
ority inheritance) is the need to migrate tasks when lock
holders are preempted. However, these migrations occur
only rarely (only in the contended case, and even then
only if an “untimely” preemption of the lock holder oc-
curs) and only if cache affinity is lost anyway (due to the
triggering preemption). Further, lock-holder migrations
do not involve the full working set of the migrating task;
rather, only the working set of the critical section, which
is typically minuscule, is accessed on the remote core.

4.5 POSIX and Developer Expectations

In the context of Linux, a another practical concern is
compliance with the POSIX standard. In particular, Linux
generally strives to satisfy the POSIX “Multi-Purpose Re-
altime System Profile” (PSE54) [2], and any change to
Linux’s locking primitives must be compatible with both
the letter and, perhaps more importantly, the spirit of the
POSIX standard. We believe migratory priority inheri-
tance satisfies both requirements.

First, with regard to the actual standard, compliance
in the multiprocessor case is trivial due the simple fact
that the POSIX real-time profile does not address multi-
processor issues; any solution that does not conflict with
the uniprocessor requirements is thus “compliant.” In par-
ticular, Linux’s processor affinity mask implementation is
not (yet) covered by the POSIX standard, even though the
concept of processor affinity masks is widespread among
UNIX-like real-time operating systems; adding processor
affinity mask inheritance is thus unproblematic. Further,
migratory priority inheritance reduces to regular priority

inheritance on uniprocessors. Hence, it is possible to intro-
duce migratory priority inheritance into the Linux kernel
without breaking POSIX compliance.

Second, with regard to the “spirit” of the standard,
we believe that migratory priority inheritance restores key
properties that application developers have come to expect
from priority inheritance on uniprocessors:

1. it only takes effect in the case of contention, thereby
avoiding overheads when kernel intervention is not
required;

2. high-priority tasks are shielded from any delays
due to locks accessed only by lower-priority tasks,
which makes it safe to enable migratory priority
inheritance for all kernel locks;

3. migratory priority inheritance does not require de-
velopers to specify protocol parameters (such as
priority ceilings);

4. migratory priority inheritance works with arbitrary
processor affinity masks (i.e., it fully supports all
scheduling options supported by Linux); and

5. whenever there exists a priority inversion, at least
one blocking task is scheduled on some processor
(assuming the absence of deadlock and that tasks
do not self-suspend for locking-unrelated reasons),
thereby ensuring the timely completion of blocking
critical sections.

To summarize our argument, classic priority inheri-
tance (when applied to partitioned scheduling) satisfies
properties 1–4, but does not guarantee in all cases that
priority inversions will be bounded, and priority boosting
satisfies properties 3–5, but may unconditionally delay
higher-priority tasks. In contrast, migratory priority inher-
itance satisfies all five properties. In particular, while we

3 A fast user-space mutex (futex) [25] is a mutex implementation in which the lock word is shared between kernel and user space. This allows
tasks to acquire and release locks without system calls in the uncontended case. Kernel intervention is only required when blocking occurs.

10



have focused on P-FP scheduling in this paper for ease
of exposition, it is important to note that migratory pri-
ority inheritance works with arbitrary processor affinity
masks, including global scheduling (where it reduces to
regular priority inheritance). We believe that migratory
priority inheritance can be realized in Linux with accept-
able overheads and thus deem it an attractive solution to
the “predictability gap” that currently exists under Linux
on non-globally-scheduled multiprocessors.

Next, we outline an implementation of migratory pri-
ority inheritance in Linux, point out potential challenges,
and discuss a simplified variant.

5 Implementation Considerations

Linux offers a well-structured and modular implementa-
tion of the classic priority inheritance protocol. In the
following, we first review Linux’s existing priority inheri-
tance infrastructure and then discuss how migratory prior-
ity inheritance can be realized in Linux. Some familiarity
with the Linux kernel is assumed. Readers primarily in-
terested in the algorithmic properties of migratory priority
inheritance may safely skip this section.

The considerations presented in this section are based
on a prototype implementation of migratory priority inher-
itance in the 3.5 “vanilla” kernel, that is, without the PRE-
EMPT RT patch, which does not modify the mechanisms
relevant to the following discussion. Even though the spe-
cific kernel version (which is the most recent at the time
of writing) may soon be outdated, the ideas underlying
Linux’s priority inheritance support have not substantially
changed since the original priority inheritance patches [19]
and are likely to remain valid in future versions as well.

5.1 The Current Implementation

The abstraction of a lock (or mutex) is provided by the
rt mutex structure, which encapsulates information
about both the task currently owning the mutex and the
tasks currently waiting to acquire the mutex (waiters).
Lock ownership information and the presence of waiters
are efficiently encoded together and can be updated with a
single atomic compare-and-exchange operation.4

A waiting task is represented by a structure named
rt mutex waiter, which is allocated on a task’s stack
when it fails to acquire a lock. Tasks waiting for a mutex
are enqueued in a wait queue, which is sorted by task
priority and contained in the lock’s rt mutex structure.
Multiple tasks can be waiting to acquire the same lock and
a single task can hold multiple locks (and thus block tasks
waiting for different locks). Under priority inheritance,

the priority of a lock-holding task Tx must be raised to the
priority of the highest-priority task (the topmost waiter in
kernel parlance) currently waiting to acquire any of the
locks currently held by Tx.

Top waiters. Clearly, quickly retrieving the current (in-
herited) priority of a task Tx is key to implementing prior-
ity inheritance efficiently. In Linux, the highest-priority
waiter (i.e., the top waiter) of each lock owned by Tx is
enqueued in a priority-sorted list. This list is commonly re-
ferred to as Tx’s top waiters list. Since the top waiters list
is priority-sorted, the head of the list is the topmost waiter,
and holds the highest priority among the tasks waiting for
all the locks currently owned by Tx. Under classic priority
inheritance, the topmost waiter’s priority is exactly the
priority that should be inherited by Tx.

Priority adjustments. The (inherited) priority of a lock-
holding task Tx may have to be updated whenever Tx
releases a lock and whenever a higher-priority task joins
or leaves the set of tasks waiting for a lock owned by Tx
(e.g., due to timeout expiration or signal delivery). When
a task Ty fails to acquire a lock L that is currently held by
another task Tx, Ty is registered among the waiters for L,
and, if Ty is the new top waiter with regard to L, Tx’s top
waiters list is updated. In this case, the priority of the lock
holder Tx is re-evaluated.

The required priority adjustment is performed by
the rt mutex adjust prio() function, which in-
vokes rt mutex getprio() to retrieve the effective
(i.e., possibly inherited) priority of a task, and invokes
rt mutex setprio() to update the priority of the task
if it differs from the current one. If a task has no wait-
ers, rt mutex getprio() simply returns the task’s
assigned base (i.e., not inherited) priority. The function
rt mutex setprio() acquires the appropriate run-
queue lock needed to safely update the priority of a task.

5.2 Migratory Priority Inheritance

Given the simplicity of migratory priority inheritance, we
believe that it can be supported within the current priority-
inheritance Linux framework with a limited amount of
changes. Nonetheless, some of these changes could be
nontrivial to implement correctly.

The key approaches to reduce the impact on the exist-
ing code are:

• appropriately construct a list of relevant highest-
priority waiters that increase the effective priority
and/or extend the effective processor affinity mask
of the lock-holding task;

• promptly update the priority of a lock-holding task
4 The actual design of rt mutex and the operations needed to update the ownership of a mutex are slightly more involved. An introductory-but-

detailed description of the design of real-time mutexes can be found in the kernel documentation.

11



if its current processor is included in the processor
affinity mask associated with some newly inherited,
higher priority; and

• update the push/pull migration logic to consider
per-processor priorities that may differ among pro-
cessors for lock-holding tasks.

Next, we discuss the data structures and operations needed
to support migratory priority inheritance.

Waiters, top waiters, and top masks. As under normal
priority inheritance, migratory priority inheritance should
ensure that locks will be acquired in the “right order”
by the tasks waiting for them. Specifically, the highest-
priority waiter should become the next lock owner when
the current owner releases it. Therefore, Linux’s current
implementation of a priority-sorted queue of waiters is not
modified under migratory priority inheritance.

However, the notion of top waiters differs under mi-
gratory priority inheritance from the one under normal
priority inheritance. Specifically, different waiters may
have different processor affinity masks. Therefore, more
than one “top waiter” may exist for each lock in the sense
that more than one waiting task may contribute to the lock
holder’s effective priority on some processor. To keep
track of these “top waiters,” a top-mask list is added to
each lock. This list contains the eligibility tuples of tasks
(i.e., top-mask waiters) that have non-redundant processor
affinity masks (i.e., that are eligible to execute on some
processor that none of the higher-priority tasks blocked
on the same lock are eligible to execute on).

Detecting whether a newly blocked tasks contributes
a non-redundant processor affinity mask can be easily ac-
complished if the top-mask list sorted in task priority order.
To do so, the list is traversed from highest to lowest prior-
ity and the union of the processors already contributed by
equal-or-higher-priority waiters is accumulated.

The squashed mask list. Under migratory priority
inheritance, a lock-holding task Tx’s effective priority on
each processor is defined by the eligibility tuples (i.e., the
priorities and processor affinity masks) of its top-mask
waiters, in addition to its assigned base priority and pro-
cessor affinity mask. However, for efficiency reasons, it is
undesirable to enumerate all top-mask waiters as part of
each scheduling decision.

Instead, the required information about a task Tx’s
top-mask waiters (which are possibly waiting on different
locks) can be compactly represented by caching, for each
priority level l, where 1 ≤ l ≤ 99, the associated union
of affinity masks of all top-mask waiters with assigned
priority l. This broadest mask with respect to priority
level l is the set of processors on which Tx is eligible to
execute with priority at least l. For each lock-holding task,
non-empty broadest masks are stored in order of decreas-

ing priorities in the squashed mask list, which is
similar in purpose to the top waiters list under normal
priority inheritance. The squashed mask list of Tx
is updated whenever a task joins or leaves the top-mask
list of a lock that is currently held by Tx, and also when
Tx acquires or releases a lock.

The inheriting list. In Linux’s current load-
balancing implementation, the push/pull logic selects the
target processor for a migrating task by comparing its ef-
fective priority with the current highest priority on remote
processors. That is, the push/pull migration code con-
siders the local priority of a task and compares with the
priorities of remote tasks under the assumption that priori-
ties do not change. Further, only the highest-priority task
that is currently not scheduled is considered as a migration
candidate to avoid scanning the entire run queue.

Unfortunately, neither is correct under migratory pri-
ority inheritance since a task’s priority may vary on dif-
ferent processors. In fact, the current migration logic may
consider a task with relatively low priority on one proces-
sor never eligible to migrate, even if its priority would
be the highest on all the other processors. To overcome
this issue, the migratory logic must quickly identify all
tasks subject to migratory priority inheritance and check
migrations opportunities for each for them, independently
of their local priority.

To this end, tasks subject to migratory priority inheri-
tance are kept track of by inserting them in a dedicated list
on each run queue. This list (the inheriting list)
contains only migratory priority inheritance tasks that
both are runnable, but not currently scheduled, and that
have a non-empty squashed mask list (i.e., pre-
empted tasks that inherit some priority). Tasks in the
inheriting list are still subject to standard local
scheduling, and are therefore still queued at their appropri-
ate priority levels in the normal fixed-priority run queues.
Furthermore, when a task is selected for scheduling, it
should also be removed from the inheriting list.
(Similarly to the current push/pull migration logic, a sched-
uled task should never be considered for migration.)

The inheriting list is employed by the
push/pull migration logic to quickly enumerate those tasks
that require special management. In addition, when tasks
are moved to other run queues, it must be ensured that the
inheriting list is properly maintained and updated
on each processor. Although each push/pull operation
should consider each task in the inheriting list,
in a typical use case (i.e., if locks are only infrequently
contended), the inheriting list should be short, or
even empty, most of the time.

Local priority adjustment. If a lock-holding task in-
herits a higher-priority eligibility tuple that includes
the processor where it is currently scheduled, its effec-

12



tive priority is immediately updated. Therefore, when
the priority of a task Tx needs to be updated, the
rt mutex adjust prio() function traverses the

squashed mask list and updates the effective pri-
ority of Tx to the first priority that includes the current
processor in the associated broadest mask. If no such pri-
ority level exists, then the scheduler is triggered to initiate
a push migration (if applicable).

The priority adjustment logic must further update the
normal fixed-priority run queues of the lock-holding task,
as well as the inheriting list if the task becomes
scheduled due to the priority adjustment.

Push and pull migrations. Push and pull operations mi-
grate a task that cannot be executed on the current proces-
sor (e.g., because a higher priority task is already sched-
uled) to a processor where it has sufficient priority to be
executed without delay.

Under migratory priority inheritance, every push/pull
operation further attempts to migrate each task cur-
rently in the inheriting list. For each such
task Tx, a push/pull operation iterates over Tx’s
squashed mask list and, for each priority level l,
tries to migrate Tx to one of the processors in the associ-
ated broadest mask. Since the squashed mask list
is priority-ordered, a push/pull operation for a task Tx at
priority level l can safely skip those processors where it
was already not possible to migrate Tx at a higher priority.

For each lock-holding task subject to migratory pri-
ority inheritance, the above migration logic considers all
eligibility tuples that contribute to the effective priority on
some processor. If the lock-holding task has sufficient (in-
herited) priority to execute on some processor, the above
migration logic will thus find the processor where the
lock-holding task is eligible to execute immediately.

5.3 Implementation Challenges

While the changes discussed in the previous section are
conceptually not very difficult, they do require consider-
able runtime management. In the following, we discuss
potential bottlenecks and possible workarounds.

Update the squashed mask list. Unfortunately,
updates to the squashed mask list are not balanced.
Particularly, the compact representation used by the
broadest-per-priority masks cannot be inverted, and does
not allow to determine the individual contributions of each
top mask waiter (as implied by “squashed”).

Therefore, when a waiter leaves the top mask list of
a lock held by a task Tx (e.g., due to a timeout expira-
tion or signal delivery), or when a lock is released by Tx,
some or all of the broadest-per-priority masks may have
to be recomputed starting from the top-mask lists of all
the locks “reachable” from Tx in the undirected wait-for

graph (i.e., all the locks whose waiters are blocked by Tx).
This expensive operation is the price to pay to enable effi-
cient push/pull migrations. In fact, migration checks are
far more frequent than (contended) lock releases or waiter
cancellation and thus should only consider the tuples in
the squashed mask list because said list is likely
short and, in the worst case, bounded by the total number
of priority levels.

Alternatives to the squashed mask list that do
not require pre-computation of the broadest-per-priority
masks may be equally expensive. For example, pre-
computing the squashed mask list may be avoided
by dynamically exploring the tree of all the top-mask
lists for each of the reachable locks. Since this operation
should be repeated at each push/pull migration attempt,
for each task in the inheriting list, the associated
overheads can only be afforded if the lock-tree to explore
is shallow and sparse.

An alternative for embedded systems. Another alter-
native implementation of migratory priority inheritance
that does not rely on the squashed mask list is per-
processor priority inheritance. This approach requires to
split a task’s priority field in an array of per-processor
priorities. Normal priority inheritance is employed to in-
dependently update the highest priority values for the task
on each (possibly inherited) eligible processor.

Although fast and efficient, memory usage is the ma-
jor drawback of this approach. While it may be preferable
for processor counts typically found in today’s embed-
ded systems (i.e., roughly ≤ 32 processors), it clearly
does not scale to large systems (such as the proverbial
4096-processor NUMA machine).

Updating the inheriting list. Under migratory priority
inheritance, the inheriting list allows to quickly
identify tasks that require a special migration policy, and it
is therefore fundamental to correctly realize the expected
theoretical properties of migratory priority inheritance.
Nonetheless, the inheriting list is an additional
per-processor list that, despite being frequently empty
unless locks are permanently contended, needs to be ap-
propriately managed. Furthermore, extra care is needed
to enqueue and dequeue tasks in both standard priority
run queues and in the inheriting list. This causes
additional overheads that can be avoided entirely by giv-
ing up on some of the analytical properties of migratory
priority inheritance, as we discuss next.

5.4 A Simplified Implementation

In this section we briefly discuss a simplified version of
migratory priority inheritance that trades improved effi-
ciency for higher delays.

One of the main performance-critical operations of

13



migratory priority inheritance is evaluating all the possible
migration options in the squashed mask list when
a task is selected of a push/pull migration.

The simplified migratory priority inheritance targets
exactly this expensive operation. Under this variant, the
squashed mask list is replaced by a single, unified
broadest mask that holds the union of the affinity masks
of all the top-mask waiters blocked by a lock-holding
task, irrespective of their assigned priorities. Contrary to
the squashed mask list, the broadest mask does not
take priority levels into account, and simply represents the
set of processors on which the lock-holding task is entitled
to run, at either its base or an inherited priority.

Under simplified migratory priority inheritance, a
lock-holding task is allowed to execute on every proces-
sors included in its broadest mask, at its highest (inherited)
priority. Contrary to full migratory priority inheritance,
simplified migratory inheritance preserves both current
Linux’s top waiter semantics and top-waiters list. In fact,
with the above relaxed execution rule, simplified migratory
priority inheritance behaves exactly like normal priority
inheritance with regard to priorities. Since the priority of
a task does no longer depend on the processor where it
is scheduled, it should not be re-evaluated as part of each
push/pull migration, but only—as under classic priority
inheritance—when the top waiters list is updated.

Further, under simplified priority inheritance, the ef-
fective priority of a task is a global property that is valid
on all processors where the task is eligible to execute, and
therefore, push/pull migrations can safely compare the
“local” priority of a task with remote priorities. The lack
of a global effective priority was the motivating reason
for the inheriting list under full migratory priority
inheritance. This additional list is therefore not required
under simplified priority inheritance.

The only changes to the current Linux’s priority in-
heritance support are related to the insertion of waiters in
the top mask lists for each lock, and to the update of the
broadest affinity mask of the lock-holding task. When new
waiters joins the top mask list of a lock, updates to the
broadest masks are considerably faster than those to the
squashed mask list. Nonetheless, the same chal-
lenges noted for updates to the squashed mask list
also apply to the broadest mask when a waiter leaves the
top mask list of some lock, or when a lock is released.
In these cases, the broadest mask should be recomputed
from the top mask lists of all the locks “reachable” by the
current lock-holding tasks.

Compared to full migratory priority inheritance, the
above enhancements on the implementation side entail
higher delays for a larger number of tasks. In fact, under
full migratory priority inheritance, only critical sections
that are accessed by “potentially local” equal-or-higher-

priority tasks can cause delays. (A task is “potentially
local” to another task if their affinity masks are not fully
disjoint.) Instead, under the simplified variant, tasks can
also be delayed by critical sections accessed by all equal-
or-higher-priority tasks in the system.5

In fact, since a lock-holding task can run at the pri-
ority of its topmost waiter task on any processors in the
broadest mask, it can possibly delay all those tasks with
lower priority than the topmost waiter, and whose affinity
masks are “connected” to that of the topmost waiter by the
affinity mask of any other waiter of the lock. (The affinity
mask does not directly overlap with the topmost waiter,
but the two tasks are “connected,” since both their affinity
masks overlap with the one of a common third waiter of
the lock.)

Despite these higher delays, it is important to note
that, like full migratory priority inheritance, simplified mi-
gratory inheritance bounds priority inversion in all cases
and is thus analytically sound and predictable. Further-
more, since it considerably easier to implement and since
it leaves the push/pull logic unchanged, it could be a worth-
while tradeoff between analytical properties and practical
efficiency. However, we caution that whether the simpli-
fied or full variant of migratory priority inheritance is used
is not merely an “implementation detail,” as the potential
for increased blocking under the simplified variant must
be taken into account during schedulability analysis.

6 Related Work

In this section, we relate migratory priority inheritance
to similar concepts and give a brief overview over major
real-time locking protocols for uni- and multiprocessors.

Uniprocessors. Besides classic priority inheritance [39,
41], there are two major real-time locking protocol alterna-
tives for uniprocessors. Both the priority-ceiling protocol
(PCP) [39, 41] and the stack resource policy (SRP) [7]
ensure that a real-time job is blocked by at most one out-
ermost critical section across all locks (and not per lock,
as under priority inheritance, assuming the job does not
self-suspend for locking-unrelated reasons), which is opti-
mal. To accomplish this, these protocols require additional
information: for each lock, a priority ceiling must be spec-
ified, which is the highest priority of any task that accesses
the lock. Determining a lock’s priority ceiling can be diffi-
cult in complex systems such as Linux, which makes the
SRP and PCP somewhat less convenient to use in practice.
Further, the PCP and the SRP require the kernel to keep
track of which locks are currently held even if locks are
not contended, which creates additional overheads.

The POSIX standard mandates the availability of what
is essentially the SRP (under the name PRIO PROTECT),

5 Note that this is still less disruptive than priority boosting, where any critical section can delay any real-time task regardless of priority.

14



which is hence also supported in Linux. However, Linux’s
PRIO PROTECT emulation uses system calls to adjust
a task’s effective scheduling priority at the beginning
and end of each (outermost) critical section and thus
incurs considerably higher average-case overheads than
Linux’s carefully tuned priority inheritance implementa-
tion (PRIO INHERIT).

Multiprocessors. To enable predictable locking in mul-
tiprocessor real-time systems, various real-time spinlock
and semaphore protocols have been proposed, with sup-
port for mutual exclusion [4, 9, 20, 21, 26, 30, 35, 37–
40, 42–44], reader-writer exclusion [12, 14–16], and k-
exclusion [15, 16, 22, 46]. Recently, protocols for pre-
dictable lock nesting [45] have been proposed as well.

Spinlock protocols [4, 9, 12, 14, 20, 26, 42–44] have
several advantages: they are easy to analyze and imple-
ment, they cause relatively little overhead since wait-
ing tasks do not suspend, and as a result can yield su-
perior schedulability compared to semaphore protocols
[10, 11, 17]. However, most spinlock protocols require
spinning jobs to be non-preemptive, which implies that
critical sections must be short. In the context of Linux,
this renders non-preemptive spinlocks unsuitable for all
but a few select locks in the core kernel (e.g., run queue
locks). While preemptable spinlocks [4, 42–44] have been
studied as well, such locks are typically more complicated
than their non-preemptive counterparts, which detracts
from the main advantage of spinlocks, namely simplicity.

Semaphore protocols for real-time multiprocessor sys-
tems can be categorized by the scheduling approach for
which they have been developed. Several real-time locking
protocols based on priority inheritance have been devised
specifically for global scheduling [9, 13, 16, 21, 22, 35,
46]. Since these protocols are based on classic priority
inheritance, they are subject to the limitations described
in this paper (recall §3.2) and thus do not close the “pre-
dictability gap” that we seek to address in this paper.

More relevant to this paper are real-time locking pro-
tocols for partitioned and clustered schedulers [9, 15, 16,
30, 37–40], which ensure bounded priority inversions un-
der non-global scheduling. However, each of the just-
cited locking protocols employs some variant of priority
boosting and is thus liable to increase worst-case latencies
(recall §3.4). As we have argued before, any protocol
based on priority boosting is fundamentally inappropriate
for Linux due to the uncertainty surrounding maximum
critical section lengths in lower-priority tasks.

Helping in Fiasco. A mechanism closely resembling mi-
gratory priority inheritance appeared in TU Dresden’s
Fiasco microkernel already in 2001 under the name lo-
cal helping [27, 28]. The mechanism derives its name

from the fact that the lock-holding task is migrated to
the blocked task’s processor, where it is “locally helped”
to finish its critical section. We prefer the name “migra-
tory priority inheritance” over “helping” because “help-
ing” could be easily misunderstood to refer to wait-free
synchronization algorithms, of which some also employ
“helping” to complete pending updates (e.g., see [5]). We
note, however, that local helping was introduced in Fi-
asco for virtually the same motivation as pointed out here,
namely to reduce blocking under P-FP scheduling.

A major difference between Fiasco’s local helping
and migratory priority inheritance is that Fiasco employs
polling (i.e., spinning) while the lock-holder has not (yet)
been preempted. In Fiasco, this is reasonable since lock-
holding tasks never suspend [28]. In Linux, however, tasks
holding mutexes do potentially self-suspend; busy-waiting
thus risks wasting considerable processor capacity.6 An-
other difference is that migratory priority inheritance, as
defined in §4.1, works seamlessly with arbitrary proces-
sor affinity masks, whereas local helping as described by
Hohmuth and Peter [28] is specific to P-FP scheduling.

Bandwidth inheritance. Most relevant to this paper, and
to migratory priority inheritance in particular, is the con-
cept of bandwidth inheritance [24, 31]. Bandwidth inher-
itance was originally devised by Lamastra et al. [31] to
transfer the concept of priority inheritance to reservation-
based scheduling, where each task’s rate of execution is
limited by a periodically replenished execution budget.
On a uniprocessor, bandwidth inheritance primarily solves
the problem of excessive blocking that can arise when
lock holders exhaust their budget. To this end, a lock
holder that has exhausted its budget may consume the
budget (or bandwidth) of tasks that it blocks. Faggioli
et al. extended bandwidth inheritance to multiprocessors
[24]. Under their multiprocessor bandwidth inheritance
protocol (MBWI), blocked tasks preemptively spin (from
an analysis point of view) while the lock holder is sched-
uled, but make their processor available to the lock holder
if it is preempted or runs out of budget. That is, as in
the uniprocessor case, lock holders may use the budget of
any waiting task, but must first migrate to a waiting task’s
processor prior to consuming its budget.

Migratory priority inheritance, as proposed in this
paper, is inspired by the MBWI, but differs in a few impor-
tant points. Notably, tasks never busy-wait under migra-
tory priority inheritance, which matches Linux’s current
locking semantics. Further, the MBWI fundamentally
assumes the presence of reservation-based scheduling,
which is currently not available in Linux (though a high-
quality option is available with the SCHED DEADLINE
patch [23, 32]). In contrast, migratory priority inheritance

6 Note that Fiasco is a microkernel in which synchronization is mostly achieved using inter-processor communication (IPC). Locking occurs
only in the microkernel itself (e.g., when updating process control blocks) and thus involves only very short critical sections. In contrast, locks are
pervasively used in both user and kernel space in Linux, and long critical sections cannot be ruled out.

15



can be applied to Linux as it works today, and could still
be combined with reservation-based scheduling should
it be included in the future. Finally, while the MBWI
transparently supports partitioned, clustered, and global
scheduling, it does not address the “predictability gap”
in the fixed-priority-based POSIX environment since it
assumes EDF scheduling. In a sense, migratory priority
inheritance can be understood to be a simplified variant of
Faggioli et al.’s MBWI [24] that has been reduced to the
core mechanism required to bound priority inversions.

7 Conclusion

We have examined Linux’s support for predictable locking
primitives and found that Linux is currently well-equipped
for hosting real-time workloads on uniprocessors only, but
not on multiprocessors. We have discussed how this “pre-
dictability gap” stems from the fact that classic priority
inheritance is ineffective under non-global scheduling. As
a solution, we have proposed to employ migratory priority
inheritance instead, which we believe to be a good fit for
Linux for four key reasons:

1. it is a straightforward generalization of priority in-
heritance that can be incorporated without substan-
tial changes into the existing kernel infrastructure
for futexes, priority inheritance, and task migra-
tions;

2. it maintains the desirable property that the schedul-
ing latency of high-priority tasks is not affected by
critical sections of lower-priority tasks;

3. it neither breaks POSIX compliance nor conflicts,
in our opinion, with application developer expecta-
tions; and

4. it reliably bounds the worst-case duration of priority
inversion to one critical section length (each time
that a lock is accessed).

In short, migratory priority inheritance is a simple mech-
anism that closes the “predictability gap” without funda-
mentally altering Linux’s locking and scheduling behavior.

Considering implementation concerns, we have dis-
cussed the design of a prototype implementation and be-
lieve that migratory priority inheritance can be realized
with reasonable effort and acceptable overheads. Nonethe-
less, for the case that overheads are deemed too large,
we have also discussed a simplified variant of migratory
priority inheritance, which, as a trade-off, offers reduced
implementation-related overheads at the cost of slightly
increased worst-case blocking. While a production-quality
implementation of either full or simplified migratory pri-
ority inheritance would certainly require additional work

and testing, it is our hope that the proposed prototype may
serve as a basis for discussion.

We are currently working on schedulability analysis
for locking protocols based on migratory priority inher-
itance under a number of different real-time scheduling
policies (including clustered and partitioned scheduling
using either fixed or EDF priorities) and analysis assump-
tions (e.g., “suspension-oblivious” analysis, see [13]). In
future applied work, we plan to evaluate migratory priority
inheritance in LITMUSRT [1] in terms of schedulability
under consideration of overheads. Further, for migratory
priority inheritance to be considered in practice, it will be
necessary to carefully study its effects on throughput and
observed average- and worst-case response times.

References

[1] The LITMUSRT project web site. http://www.
litmus-rt.org.

[2] IEEE Standard for Information Technology - Stan-
dardized Application Environment Profile (AEP) -
POSIX Realtime and Embedded Application Sup-
port. Number Std 1003.13-2003. IEEE Computer
Society, 2003.

[3] IEEE Standard for Information Technology -
Portable Operating System Interface (POSIX) - Base
Specifications. Number Std 1003.1-2008. IEEE Com-
puter Society, 2008.

[4] J. Anderson, R. Jain, and K. Jeffay. Efficient ob-
ject sharing in quantum-based real-time systems. In
Proceedings of the 19th IEEE Real-Time Systems
Symposium, pages 346–355, 1998.

[5] J. Anderson, S. Ramamurthy, and R. Jain. Imple-
menting wait-free objects on priority-based systems.
In Proceedings of the 16th annual ACM Symposium
on Principles of Distributed Computing, pages 229–
238. ACM, 1997.

[6] N. Audsley, A. Burns, M. Richardson, K. Tindell,
and A.J. Wellings. Applying new scheduling theory
to static priority pre-emptive scheduling. Software
Engineering Journal, 8(5):284–292, 1993.

[7] T. Baker. Stack-based scheduling for realtime pro-
cesses. Real-Time Systems, 3(1):67–99, 1991.

[8] T. Baker and S. Baruah. Schedulability analysis
of multiprocessor sporadic task systems. In Hand-
book of Real-Time and Embedded Systems. Chapman
Hall/CRC, 2007.

[9] A. Block, H. Leontyev, B. Brandenburg, and J. An-
derson. A flexible real-time locking protocol for

16

http://www.litmus-rt.org
http://www.litmus-rt.org


multiprocessors. In Proceedings of the 13th IEEE
Conference on Embedded and Real-Time Computing
Systems and Applications, pages 47–57, 2007.

[10] B. Brandenburg. Scheduling and Locking in Multi-
processor Real-Time Operating Systems. PhD thesis,
The University of North Carolina at Chapel Hill,
2011.

[11] B. Brandenburg and J. Anderson. A comparison of
the M-PCP, D-PCP, and FMLP on LITMUSRT. In
Proceedings of the 12th International Conference
On Principles Of Distributed Systems, LNCS 5401,
pages 105–124. Springer-Verlag, 2008.

[12] B. Brandenburg and J. Anderson. Reader-writer
synchronization for shared-memory multiprocessor
real-time systems. In Proceedings of the 21th Eu-
romicro Conference on Real-Time Systems, pages
184–193, 2009.

[13] B. Brandenburg and J. Anderson. Optimality results
for multiprocessor real-time locking. In Proceedings
of the 31st Real-Time Systems Symposium, pages
49–60, 2010.

[14] B. Brandenburg and J. Anderson. Spin-based reader-
writer synchronization for multiprocessor real-time
systems. Real-Time Systems, 46(1):25–87, 2010.

[15] B. Brandenburg and J. Anderson. Real-time
resource-sharing under clustered scheduling: Mutex,
reader-writer, and k-exclusion locks. In Proceed-
ings of the 9th ACM International Conference on
Embedded Software, 2011.

[16] B. Brandenburg and J. Anderson. The OMLP family
of optimal multiprocessor real-time locking proto-
cols. Design Automation for Embedded Systems, to
appear, 2012.

[17] B. Brandenburg, J. Calandrino, A. Block, H. Leon-
tyev, and J. Anderson. Synchronization on real-time
multiprocessors: To block or not to block, to suspend
or spin? In Proceedings of the 14th IEEE Real-Time
and Embedded Technology and Applications Sympo-
sium, pages 342–353, 2008.

[18] J. Calandrino, J. Anderson, and D. Baumberger. A
hybrid real-time scheduling approach for large-scale
multicore platforms. In Proceedings of the 19th Eu-
romicro Conference on Real-Time Systems, pages
247–256, 2007.

[19] J. Corbet. Priority inheritance in the kernel. Linux
Weekly News, http://lwn.net/Articles/
178253/, 2006.

[20] U. Devi, H. Leontyev, and J. Anderson. Efficient
synchronization under global EDF scheduling on
multiprocessors. In Proceedings of the 18th Euromi-
cro Conference on Real-Time Systems, pages 75–84,
2006.

[21] A. Easwaran and B. Andersson. Resource sharing
in global fixed-priority preemptive multiprocessor
scheduling. In Proceedings of the 30th IEEE Real-
Time Systems Symposium, pages 377–386, 2009.

[22] G. Elliott and J. Anderson. An optimal k-exclusion
real-time locking protocol motivated by multi-gpu
systems. In Proceedings of the 19th International
Conference on Real-Time and Network Systems,
pages 15–24, 2011.

[23] D. Faggioli, F. Checconi, M. Trimarchi, and
C. Scordino. An EDF scheduling class for the linux
kernel. In Proceedings of the 11th Real-Time Linux
Workshop, 2009.

[24] D. Faggioli, G. Lipari, and T. Cucinotta. The mul-
tiprocessor bandwidth inheritance protocol. In Pro-
ceedings of the 22nd Euromicro Conference on Real-
Time Systems, pages 90–99, 2010.

[25] H. Franke, R. Russel, and M. Kirkwood. Fuss, fu-
texes and furwocks: Fast userlevel locking in linux.
In Proceedings of the 2002 Ottawa Linux Sympo-
sium, pages 479–495, 2002.

[26] P. Gai, M. di Natale, G. Lipari, A. Ferrari,
C. Gabellini, and P. Marceca. A comparison of
MPCP and MSRP when sharing resources in the
Janus multiple processor on a chip platform. In Pro-
ceedings of the 9th IEEE Real-Time And Embedded
Technology Application Symposium, pages 189–198,
2003.

[27] M. Hohmuth and H. Härtig. Pragmatic nonblocking
synchronization for real-time systems. In USENIX
Annual Technical Conference, 2001.

[28] M. Hohmuth and M. Peter. Helping in a multiproces-
sor environment. In Proceeding of the Second Work-
shop on Common Microkernel System Platforms,
2001.

[29] M. Joseph and P. Pandya. Finding response times in a
real-time system. The Computer Journal, 29(5):390–
395, 1986.

[30] K. Lakshmanan, D. Niz, and R. Rajkumar. Coordi-
nated task scheduling, allocation and synchroniza-
tion on multiprocessors. In Proceedings of the 30th
IEEE Real-Time Systems Symposium, pages 469–
478, 2009.

17

http://lwn.net/Articles/178253/
http://lwn.net/Articles/178253/


[31] G. Lamastra, G. Lipari, and L. Abeni. A bandwidth
inheritance algorithm for real-time task synchroniza-
tion in open systems. In Proceedings of the 21st
IEEE Real-Time Systems Symposium, pages 151–
160, 2001.

[32] J. Lelli, G. Lipari, D. Faggioli, and T. Cucinotta. An
efficient and scalable implementation of global EDF
in Linux. In Proceedings of the 7th Annual Work-
shop on Operating Systems Platforms for Embedded
Real-Time Applications, 2011.

[33] J. Leung and J. Whitehead. On the complexity of
fixed-priority scheduling of periodic, real-time tasks.
Performance Evaluation, 2(4):237–250, 1982.

[34] C. Liu and J. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment.
Journal of the ACM, 30:46–61, 1973.

[35] G. Macariu and V. Cretu. Limited blocking resource
sharing for global multiprocessor scheduling. In
Proceedings of the 23rd Euromicro Conference on
Real-Time Systems, pages 262–271, 2011.

[36] A. Mok. Fundamental Design Problems of Dis-
tributed Systems for the Hard-Real-Time Environ-
ment. PhD thesis, Massachusetts Institute of Tech-
nology, 1983.

[37] F. Nemati, M. Behnam, and T. Nolte. Independently-
developed real-time systems on multi-cores with
shared resources. In Proceedings of the 23rd Eu-
romicro Conference on Real-Time Systems, pages
251–261, 2011.

[38] R. Rajkumar. Real-time synchronization protocols
for shared memory multiprocessors. Proceedings
of the 10th International Conference on Distributed
Computing Systems, pages 116–123, 1990.

[39] R. Rajkumar. Synchronization In Real-Time
Systems—A Priority Inheritance Approach. Kluwer
Academic Publishers, 1991.

[40] R. Rajkumar, L. Sha, and J. Lehoczky. Real-time
synchronization protocols for multiprocessors. Pro-
ceedings of the 9th IEEE Real-Time Systems Sympo-
sium, pages 259–269, 1988.

[41] L. Sha, R. Rajkumar, and J. Lehoczky. Priority in-
heritance protocols: an approach to real-time syn-
chronization. IEEE Transactions on Computers,
39(9):1175–1185, 1990.

[42] H. Takada and K. Sakamura. Predictable spin lock
algorithms with preemption. In Proceedings of the
11th IEEE Workshop on Real-Time Operating Sys-
tems and Software, pages 2–6, 1994.

[43] H. Takada and K. Sakamura. A novel approach to
multiprogrammed multiprocessor synchronization
for real-time kernels. In Proceedings of the 18th
IEEE Real-Time Systems Symposium, pages 134–
143, 1997.

[44] C.-D. Wang, H. Takada, and K. Sakamura. Priority
inheritance spin locks for multiprocessor real-time
systems. In Proceedings of the 2nd International
Symposium on Parallel Architectures, Algorithms,
and Networks, pages 70–76, 1996.

[45] B. Ward and J. Anderson. Supporting nested locking
in multiprocessor real-time systems. In Proceed-
ings of the 24th Euromicro Conference on Real-Time
Systems, pages 223–232, 2012.

[46] B. Ward, G. Elliott, and J. Anderson. Replica-request
priority donation: A real-time progress mechanism
for global locking protocols. In Proceedings of
the 18th International Conference on Embedded
and Real-Time Computing Systems and Applications,
pages 280–289, 2012.

18


	Introduction
	Linux on Uniprocessors
	Fixed-Priority Scheduling
	Uniprocessor Priority Inversion
	Classic Priority Inheritance

	The Predictability Gap
	Multiprocessor Scheduling
	Priority Inheritance is Ineffective
	The Classic Solution: Priority Boosting
	Increased Scheduling Latency

	The Case for Migratory Priority Inheritance
	A Simple Solution
	Bounded Priority Inversion
	Unaffected Worst-Case Latency
	Fast Path and Overheads
	POSIX and Developer Expectations

	Implementation Considerations
	The Current Implementation
	Migratory Priority Inheritance
	Implementation Challenges
	A Simplified Implementation

	Related Work
	Conclusion

