
Cache-Related Preemption and Migration Delays:
Empirical Approximation and Impact on Schedulability∗

Andrea Bastoni† Björn B. Brandenburg‡ James H. Anderson‡

Abstract
A job that is impeded by a preemption or migration incurs
additional cache misses when it resumes execution due to
a loss of cache affinity. While often regarded negligible in
scheduling-theoretic work, such cache-related delays must
be accounted for when comparing scheduling algorithms in
real systems. Two empirical methods to approximate cache-
related preemption and migration delays on actual hard-
ware are proposed, and a case study reporting measured
average- and worst-case overheads on a 24-core Intel sys-
tem with a hierarchy of shared caches is presented. The
widespread belief that migrations are always more costly
than preemptions is refuted by the observed results. Ad-
ditionally, an experiment design for schedulability studies
that allows algorithms to be compared objectively under
consideration of cache-related delays is presented.

1 Introduction
A controversial topic with regard to the choice of scheduler
in multiprocessor real-time systems—both within academia
and among practitioners—is the relative impact of cache-
related preemption and migration delay (CPMD), i.e., the
delay that a preempted job incurs due to a loss of cache
affinity after resuming execution.

Traditionally, migrations are considered to be a source of
unacceptable overhead, and thus implementors tend to fa-
vor partitioning to avoid migrations altogether. This view,
however, conflicts with scheduling-theoretic advances from
the last decade that show that there exist global schedulers,
which allow jobs to migrate freely, that are provably supe-
rior to partitioning if overheads (including CPMD) are neg-
ligible [5, 17, 19, 24, 33]. In contrast, if CPMD is deemed to
be significant (which, of course, it is in practice), then one
can easily construct scenarios in which global scheduling
is not a viable alternative by assuming prohibitively high
migration costs. However, how realistic are such scenarios?

Clearly, a meaningful comparison of schedulers requires
CPMD to be taken into account, yet arbitrarily choosing
∗Work supported by AT&T, IBM, and Sun Corps.; NSF grants CNS

0834270, CNS 0834132, and CNS 0615197; ARO grant W911NF-09-1-
0535; and AFOSR grant FA 9550-09-1-0549.
†SPRG, University of Rome “Tor Vergata”
‡Dept. of Computer Science, U. of North Carolina at Chapel Hill

delays is of only little benefit. The problem is compounded
by the difficulty of measuring CPMD [9], which can only be
observed indirectly and is heavily dependent on the working
set size (WSS) of each task, in contrast to other OS delays
such as scheduling overhead [8, 9].

This raises three central questions:

1. How can CPMD be estimated empirically when eval-
uating algorithms for a specific platform?

2. What are reasonable values to assume for CPMD
when evaluating (newly-proposed) algorithms in
scheduling-theoretic work?

3. How can schedulers be evaluated without accidentally
introducing a bias towards a particular WSS?

In particular, we are interested in simple, yet effective,
methods that can be realistically performed as part of
scheduling research and by practitioners during early de-
sign phases (i.e., when selecting platforms and algorithms).
Contributions. In this paper, we propose two approaches
to measure CPMD: a “schedule-sensitive method” that can
measure scheduler-dependent cache effects (Sec. 3.1), and
a “synthetic method” that can be used to quickly record a
large number of samples (Sec. 3.2). (A preliminary version
of the “schedule-sensitive method” was previously used—
but not described in detail—in [9].)

To demonstrate the efficacy of our approaches, we re-
port average and maximum CPMD for various WSSs on
a current 24-core Intel platform with hierarchical caches
(Sec. 4). Perhaps surprisingly, in a system under load, mi-
grations were found to not cause significantly more delay
than preemptions (Sec. 4.2). In particular, our results show
that CPMD is (i) in excess of one millisecond for work-
ing set sizes exceeding 256 KB (Fig. 2(a)), (ii) ill-defined
if there is heavy contention for shared caches (Fig. 2(c)),
(iii) strongly dependent on the preemption length (Fig. 3),
and (iv) not dependent on task set size (Fig. 4).

Finally, we discuss how CPMD can be integrated into
large-scale schedulability studies without rendering the re-
sults dependent on particular WSS assumptions (Sec. 5).
Related work. Accurately assessing cache-related delays
is a classical component of worst-case execution time
(WCET) analysis [42], in which an upper bound on the

maximum resource requirements of a real-time task is de-
rived a priori based on control- and data-flow analysis. Un-
fortunately, predicting cache contents and hit rates is notori-
ously difficult: even though there has been some initial suc-
cess in bounding cache-related preemption delays (CPDs)
caused by simple data [31] and instruction caches [37], an-
alytically determining preemption costs on uniprocessors
with private caches is still generally considered to be an
open problem [42]. Thus, on multicore platforms with a
complex hierarchy of shared caches, we must—at least for
now—resort to empirical approximation. However, given
recent advances in bounding migration delays [21] and ana-
lyzing interference due to shared caches [16, 43], we expect
multicore WCET analysis to be developed eventually.

Trace-driven memory simulation [41], in which mem-
ory reference traces collected from actual program execu-
tions are interpreted with a cache simulator, has been ap-
plied to count cache misses after context switches [29, 36].
Using traces from throughput-oriented workloads, Mogul
and Borg [29] estimated CPDs to lie within 10µs to 400µs
on an early ’90s RISC-like uniprocessor with caches rang-
ing in size from 64 to 2048 kilobytes. In work on real-
time systems, Stärner and Asplund [36] used trace-driven
memory simulation to study CPDs in benchmark tasks on
a MIPS-like uniprocessor with small caches. As the sim-
ulation environment is fully controlled, this method allows
cache effects to be studied in great detail, but it is also lim-
ited by its reliance on accurate architectural models (which
may not always be available) and representative memory
traces (which are difficult to collect due to complex instru-
mentation requirements).

Several probabilistic models have been proposed to pre-
dict expected cache misses on uniprocessors [1, 27, 39]. In
the context of evaluating (hard) real-time schedulers, such
models apply only to a limited extent because it is difficult
to extract bounds on the worst-case number of cache misses.
Further, they rely on task parameters that are difficult to ob-
tain or predict (e.g., cache access profiles [27]), and do not
predict cache misses after migrations.

Closely related to our approach are several recent CPD
microbenchmarks [18, 25, 40]. Li et al. [25] measured the
cost of switching between two processes that alternate be-
tween accessing a data array and communicating via a pipe
on an Intel Xeon processor with a 512kB L2 cache, and
found that average case CPDs can range from around 100µs
to 1500µs, depending on array size and access pattern. In
the context of real-time systems, Li et al.’s experimental
setup is limited because it can only estimate average-case,
but not worst-case, delays. David et al. [18] measured
preemption delays in Linux kernel threads on an embed-
ded ARM processor with comparably small caches and ob-
served CPDs in the range of 60µs to 120µs. Tsafrir [40]
investigated the special case in which the scheduled job is
not preempted, but cache contents are perturbed by peri-

odic clock interrupts, and found that slowdowns vary heav-
ily among workloads. None of the cited empirical studies
considered job migrations.

Once bounds on cache-related delays are known for a
given task set, they must be accounted for during schedula-
bility analysis. This is typically accomplished by inflating
task parameters to reflect the time lost to reloading cache
contents. Straightforward methods are known for common
uniprocessor schedulers [6, 11, 22] and have also been de-
rived for global schedulers [19, 34]; we use this approach in
Sec 5. A limitation of these methods is that each preemp-
tion between any two tasks is assumed to cause maximal de-
lay, an assumption that is likely unnecessarily pessimistic.
More advanced methods that yield tighter bounds by an-
alyzing per-task cache use and the instant at which each
preemption occurs have been developed for static-priority
uniprocessor schedulers [23, 30, 37]. However, similar to
WCET analysis, these methods have not yet been gener-
alized to multiprocessors since they require useful cache
contents to be predicted accurately. Stamatescu et al. [35]
propose including average memory access costs in specific
analysis, but do not report measured costs.

Several research directions orthogonal to this paper are
concerned with avoiding, or at least reducing, cache-related
delays in multiprocessor real-time systems. On an architec-
tural level, Sarkar et al. [32] have proposed a scheduler-
controlled cache management scheme that enables cache
contents to be transferred in bulk instead of relying on nor-
mal cache-consistency updates. This can be employed to
lessen migration costs by transferring useful cache contents
before a migrated job resumes [32]. Likewise, Suhendra
and Mitra [38] have considered cache locking and parti-
tioning policies to isolate real-time tasks from timing in-
terference due to shared caches. While promising, neither
technique is supported in current multicore architectures.

In work on real-time scheduling, numerous recently-
proposed schedulers aim to balance the advantages of par-
titioning and global scheduling by reducing the number of
migrations. Such hybrid approaches can be classified into
two families: in semi-partitioned schedulers [2], most jobs
are fixed to processors and only few migrate, whereas in
clustered schedulers [4, 13], all jobs may migrate, but only
among processors that share a cache. Going a step fur-
ther, cache-aware schedulers [12, 20], which make shared
caches an explicitly-managed resource, have been proposed
to both prevent interference in hard real-time systems [20]
and to encourage data reuse in soft real-time systems [12].

Work on hybrid schedulers makes strong assumptions on
the relative costs of migrations and preemptions—to fairly
evaluate the merits of said approaches thus requires sound
estimates of cache-related delays. We detail our methods
for obtaining such estimates in Sec. 3, after briefly summa-
rizing required background next.

2 Background
CPMD is a characteristic of modern processors and inde-
pendent of any particular task model. Given our interest
in real-time systems, our focus is the classic sporadic task
model [15, 26, 28] in which a workload is specified as a col-
lection of tasks. Each task Ti is characterized by a WCET ei

and a minimum inter-arrival time or period pi, and releases
a job for execution at most once every pi time units.

Such a job J is preempted if its execution is temporarily
paused before it is completed, e.g., in favor of another job
with higher priority. Suppose J is preempted at time tp on
processor P and resumes execution at time tr on processor
R. J is said to have incurred a preemption if P = R, and
a migration otherwise. In either case, we call tr − tp the
preemption length. A job may be preempted multiple times.

Scheduling. Let m denote the number of processors.
There are two fundamental approaches to scheduling spo-
radic tasks on multiprocessors [15]: with global scheduling,
processors are scheduled by selecting jobs from a single,
shared queue, whereas with partitioned scheduling, each
processor has a private queue and is scheduled indepen-
dently using a uniprocessor scheduling policy. Clustered
scheduling [4, 13] is a generalization of both approaches:
tasks are partitioned ontom/c clusters of c processors each,
which are then scheduled globally (with respect to the pro-
cessors in each cluster). We use the earliest-deadline-first
(EDF) policy in each category, i.e., in this paper, we con-
sider partitioned EDF (P-EDF, c = 1), clustered EDF (C-
EDF, 1 < c < m), and global EDF (G-EDF, c = m).

Caches. Modern processors employ a hierarchy of fast
cache memories that contain recently-accessed instructions
and operands to alleviate high off-chip memory latencies.
Caches are organized in layers (or levels), where the fastest
(and usually smallest) caches are denoted level-1 (L1)
caches, with deeper caches (L2, L3, etc.) being successively
larger and slower. A cache contains either instructions or
data, and may contain both if it is unified. In multiproces-
sors, shared caches serve multiple processors, in contrast to
private caches, which serve only one.

Caches operate on blocks of consecutive addresses
called cache lines with common sizes ranging from 8 to 128
bytes. In direct mapped caches, each cache line may only
reside in one specific location in the cache. In fully associa-
tive caches, each cache line may reside at any location in the
cache. In practice, most caches are set associative, wherein
each line may reside at a fixed number of locations.

The set of cache lines accessed by a job is called the
working set (WS) of the job; workloads are often character-
ized by their working set sizes (WSSs). A cache line present
in a cache is useful if it is going to be accessed again. If a
job references a cache line that cannot be found in a level-X
cache, then it suffers a level-X cache miss. This can occur
for several reasons. Compulsory misses are triggered the

first time a cache line is referenced. Capacity misses result
if the WSS of the job exceeds the size of the cache. Further,
in direct mapped and set associative caches, conflict misses
arise if useful cache lines were evicted to accommodate
mapping constraints of other cache lines. A shared cache
must exceed the combined WS of all jobs accessing it, oth-
erwise, frequent capacity and conflict misses may arise due
to cache interference. Jobs that incur frequent level-X ca-
pacity and conflict misses even if executing in isolation are
said to be thrashing the level-X cache.

Cache affinity describes the effect that a job’s overall
cache miss rate tends to decrease with increasing execution
time (unless it thrashes all cache levels)—after an initial
burst of compulsory misses, most useful cache lines have
been brought into a cache and do not cause further misses.
This explains CPD: when a job resumes execution after a
preemption, it is likely to suffer additional capacity and con-
flict misses as the cache was perturbed [27]. Migrations
may further cause affinity for some levels to be lost com-
pletely (depending on cache sharing), thus adding compul-
sory misses to the penalty.

A job’s memory references are cache-warm after cache
affinity has been established; conversely, cache-cold refer-
ences imply a lack of cache affinity.

In this paper, we restrict our focus to cache-consistent
shared-memory machines: when updating a cache line that
is present in multiple caches, inconsistencies are avoided
by a cache consistency protocol, which either invalidates
outdated copies or propagates the new value.

Schedulability. In a hard real-time system, each job
must complete by its specified deadline, whereas bounded
deadline tardiness is permissible in a soft real-time sys-
tem [19]. In the design of a real-time system, a validation
procedure—or schedulability test—must be used to deter-
mine a priori whether all timing constraints will be met.

As discussed in Sec. 1, current WCET analysis is limited
to yield bounds assuming non-preemptive execution [42,
43]. Hence, schedulability tests must be augmented to re-
flect system overheads such as CPMD [6, 11, 19, 22, 28,
34]. In particular, under each of the aforementioned EDF
variants, it is sufficient to inflate each task’s execution cost
by the maximum delay caused by one preemption or mi-
gration [19, 28]. Formally, let Dc denote a bound on the
maximum CPMD incurred by any job, and let, for each
task Ti, e′i = ei + Dc denote the inflated execution cost:
all timing constraints will be met if the task system passes
a schedulability test assuming an execution cost of e′i for
each Ti [19, 28]. Generally speaking, CPMD can be fac-
tored into execution costs using similar scheduler-specific
formulas as long as the maximum number of preemptions
incurred or caused by a job can be bounded.

In practice, additional delay sources such as scheduling
overheads [8, 9, 14] and interrupt interference [8, 10] must
also be taken into account using similar methods, but such

J

t

t0

Cold

t1

Warm

t2 t3

Preemption

t4

After Preempt.

t5

Warm Delay

1

Figure 1: Cache-delay measurement.

considerations are beyond the scope of this paper—our fo-
cus is to empirically approximate Dc in real systems.

3 Measuring Cache-Related Delays
Recall that a job is delayed after a preemption or a migra-
tion due to a (partial) loss of cache affinity. To measure such
delays, we consider jobs that access their WS as illustrated
in Fig. 1: a job J starts executing cache-cold at time t0 and
experiences compulsory misses until time t1, when its WS
is completely loaded into cache. After t1, each subsequent
memory reference by J is cache-warm. At time t2, the job
has successfully referenced its entire WS in a cache-warm
context. From t2 onward, the job repeatedly accesses sin-
gle words of its WS (to maintain cache affinity) and checks
after each access if a preemption or migration has occurred.
Suppose that the job is preempted at time t3 and not sched-
uled until time t4. As J lost cache affinity during the inter-
val [t3, t4], the length of the interval [t4, t5] (i.e., the time
needed to reference again its entire WS) reflects the time
lost to additional cache misses.

Let dc denote the cache-related delay suffered by J . Af-
ter the WS has been fully accessed for the third time (at time
t5), dc is given by the difference dc = (t5− t4)−(t2− t1).1
After collecting a trace dc,0, dc,1, . . . , dc,k from a suffi-
ciently large number of jobs k, maxl{dc,l} can be used to
approximate Dc (recall thatDc is a bound on the maximum
CPMD incurred by any job). Similarly, average delay and
standard deviation can be readily computed during off-line
analysis.

On multiprocessors with a hierarchy of shared caches,
migrations are categorized according to the level of cache
affinity that is preserved (e.g., a job migration between
two processors sharing an L2 cache is an L2-migration).
A memory migration does not preserve any level of cache
affinity. Migrations can be identified by recording at time
t3 the processor P on which J was executing and at time t4
the processor R on which J resumes execution.

Each sample dc,l can be obtained either directly or indi-
rectly. A low-overhead clock device can be used to directly
measure the WS access times [t1, t2] and [t4, t5], which im-
mediately yield dc. Alternatively, some platforms include

1The interval [t2, t3] is not reflected in dc since jobs are simply waiting
to be preempted while maintaining cache affinity during this interval.

hardware performance counters that can be used to indi-
rectly measure dc by recording the number of cache misses.
The number of cache misses experienced in each interval
is then multiplied by the time needed to service a single
cache miss. In this paper, we focus on the direct mea-
sure of WS access times, as reliable and precise clock de-
vices are present on virtually all (embedded) platforms. In
contrast, the availability of suitable performance counters
varies greatly among platforms.

Cache-related preemption and migration delays clearly
depend on the WSS of a job and possibly on the scheduling
policy [9] and on the task set size (TSS). Hence, to detect
such dependencies (if any), each trace dc,0, dc,1, . . . , dc,k

should ideally be collected on-line, i.e., as part of a task set
that is executing under the scheduler that is being evaluated
without altering the implemented policy. We next describe
a method that realizes this idea.

3.1 Schedule-Sensitive Method
With this method, dc samples are recorded on-line while
scheduling a proper task set under the algorithm of inter-
est. Performing these measurements without changing the
regular scheduling of a task set poses the question of how
to efficiently distinguish between a cold, warm, and post-
preemption (or migration — post-pm) WS access. In par-
ticular, detecting a post-pm WS access is subtle, as jobs run-
ning under OSs with address space separation (e.g., Linux)
are generally not aware of being preempted or migrated.
Solving this issue requires a low-overhead mechanism that
allows the kernel to inform a job of every preemption and
migration. Note that the schedule-sensitive method cru-
cially depends on the presence of such a mechanism (a suit-
able implementation is presented in Sec. 3.3 below).

Delays should be recorded by executing test cases with a
wide range of TSSs and WSSs. This likely results in traces
with a variable number of valid samples. To obtain an un-
biased estimator for the maximum delay, the same number
of samples should be used in the analysis of each trace. In
practice, this implies that only (the first) kmin from each
trace can be used, where kmin is the minimum number of
valid samples among all traces.

Since samples are collected from a valid schedule, the
advantage of this method is that it can identify dependencies
(if any) of CPMD on scheduling decisions and on the num-
ber of tasks. However, this implies that it is not possible to
control when a preemption or a migration will happen, since
these decisions depend exclusively on the scheduling algo-
rithm (which is not altered). Therefore, the vast majority
of the collected samples are likely invalid, e.g., a job may
not be preempted at all or may be preempted prematurely,
and only samples from jobs that execute exactly as shown in
Fig. 1 can be used in the analysis. Thus, large traces are re-
quired to obtain few samples. Worse, for a given scheduling
algorithm, not all combinations of WSS and TSS may be

able to produce the execution pattern needed in the analysis
(e.g., this is the case with G-EDF, as discussed in Sec. 4).

Hence, we developed a second method that achieves
finer control over the measurement process by artificially
triggering preemptions and migrations of a single task.

3.2 Synthetic Method
In this approach, CPMD measures are collected by a sin-
gle task that repeatedly accesses working sets of different
sizes. The task is assigned the highest priority and there-
fore it cannot be preempted by other tasks.

In contrast to the schedule-sensitive method, preemp-
tions and migrations are explicitly triggered in the synthetic
method. In particular, the destination core and the preemp-
tion length are chosen randomly (preemptions arise if the
same core is chosen twice in a row). In order to trigger pre-
emptions, L2-migrations, L3-migrations, etc. with the same
frequency (and thus to obtain an equal number of samples),
proper probabilities must be assigned to each core. Further-
more, as the task execution is tightly controlled, post-pm
WS accesses do not need to be detected, and no kernel in-
teraction is needed.

The synthetic method avoids the major drawback of the
previous approach, as it generates only valid post-pm data
samples. This allows a statistically meaningful number of
samples to be obtained rapidly. However, as preemption
and migration scheduling decision are externally imposed,
this methodology cannot determine possible dependencies
of CPMD on scheduling decisions or on the TSS.

3.3 Implementation Concerns

Both methods were implemented using LITMUSRT, a real-
time Linux extension developed at UNC [14]. The current
version of LITMUSRT is based on Linux 2.6.32.

Precise time measures of WS access times were obtained
on the x86 Intel platform used in our experiments by means
of the time-stamp counter (TSC), a per-core counter that
can be used as high-resolution clock device. The direct
measure of CPMD on a multiprocessor platform should
take into account the imperfect alignment of per-processor
clock devices (clock skew). Clock skew errors can be
avoided if WS access times are evaluated only based on
samples obtained on the same processor (e.g., in Fig. 1, t1
and t2 should be measured on the same processor, which
may differ from the processor where t4 and t5 are mea-
sured). In most OSs, time interval measurements can be
further perturbed by interrupt handling. These disturbances
can be avoided by disabling interrupts while measuring WS
access times. Although this does not prevent non-maskable
interrupts (NMIs) from being serviced, NMIs are infre-
quent events that likely only have a minor impact on CPMD
approximations. We note, however, that our methodology
currently cannot detect interference from NMIs.

Disabling interrupts under the schedule-sensitive method
is a tradeoff between accuracy and the rate at which sam-
ples are collected. On the one hand, disabling interrupts in-
creases the number of valid samples, but on the other hand,
it implicitly alters the scheduling policy by introducing non-
preemptive sections. We chose to disable interrupts to re-
duce the length of the experiments.

Within LITMUSRT, we implemented the low-overhead
kernelspace–userspace communication mechanism re-
quired by the schedule-sensitive method by sharing a sin-
gle per-task memory page (the control page) between the
kernel and each task. A task can infer whether it has been
preempted or migrated based on the control page: when it is
selected for execution, the kernel updates the task’s control
page by increasing a preemption counter and the job se-
quence number, storing the preemption length, and record-
ing on which core the task will start its execution.

4 Case Study
To verify and compare results of the two presented methods,
we measured cache-related preemption and migration de-
lays using both methodologies on an Intel Xeon L7455. The
L7455 is a 24-core 64-bit uniform memory access (UMA)
machine with four physical sockets. Each socket contains
six cores running at 2.13 GHz. All cores in a socket share
a unified 12-way set associative 12 MB L3 cache, while
groups of two cores each share a unified 12-way set asso-
ciative 3 MB L2 cache. Every core also includes an 8-way
set associative 32 KB L1 data cache and an identical L1
instruction cache. All caches have a line size of 64 bytes.

4.1 Experimental Setup
We used the G-EDF algorithm to measure CPMD with
the schedule-sensitive method, but we emphasize that the
method can be applied to other algorithms as well. For
this method, we measured the system behavior of periodic
task sets consisting of 25 to 250 tasks in steps of variable
sizes (from 20 to 30, with smaller steps where we desired
a higher resolution). Task WSSs were varied over {4, 32,
64, . . . , 2048} KB. Per-WSS write ratios of 1/2 and 1/4
were assessed.2 For each WSS and TSS, we measured
ten randomly-generated task sets using parameter ranges
from [8, 9]. Each task set was traced for 60 seconds and
each experiment was carried out once in an otherwise idle
system and once in a system loaded with best-effort cache-
polluter tasks. Each of these tasks was statically assigned to
a core and continuously thrashed the L1, L2, and L3 caches

2In preliminary tests with different write ratios, 1/2 and 1/4 showed
the highest worst-case overheads, with 1/4 performing slightly worse. All
write ratios are given with respect to individual words, not cache lines.
There are eight words in each cache line, thus each task updated every
cache line in its WS multiple times. Tests with write ratios lower than 1/8,
under which some cache lines are only read, exhibited reduced overheads.

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 60 80 100 120 140 160 180 200 220 240 260

ov
er

he
ad

 (
us

)

number of tasks

measured maximum overhead (25.00% writes)

a preemption
a migration through a shared L2 cache

a migration through a shared L3 cache
a migration through main memory

 10

 100

 1000

 10000

 100000

 4 16 64 256 1024 4096 16384

ca
ch

e-
re

la
te

d
de

la
ys

 (
us

)

working set size (kilobytes)

measured maximum overhead (25.00% writes)

(a)

 0.1

 1

 10

 100

 1000

 10000

 4 16 64 256 1024 4096 16384

ca
ch

e-
re

la
te

d
de

la
ys

 (
us

)

working set size (kilobytes)

measured maximum overhead (25.00% writes)

(b)

 1

 10

 100

 1000

 10000

 4 16 64 256 1024 4096 16384

ca
ch

e-
re

la
te

d
de

la
ys

 (
us

)

working set size (kilobytes)

measured average overhead (25.00% writes)

(c)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 4 16 64 256 1024 4096 16384

ca
ch

e-
re

la
te

d
de

la
ys

 (
us

)

working set size (kilobytes)

measured average overhead (25.00% writes)

(d)
Figure 2: CPMD approximations obtained with the synthetic method. The graphs show maximum and average CPMD (in µs) for
preemptions and different types of migrations as a function of WSS (in KB). (a) Worst-case delay under load. (b) Worst-case delay in an
idle system. (c) Average-case delay under load. (d) Average-case delay in an idle system. The error bars indicate one standard deviation.

by accessing large arrays. In total, more than 50 GB of trace
data with 600 million overhead samples were obtained dur-
ing more than 24 hours of tracing.

We used a single SCHED FIFO task running at the high-
est priority to measure CPMD with the synthetic method.
The WSS was chosen from {4, 8, 16, . . . , 8192} KB. We
further tested WSSs of 3 and 12 MB, as they correspond to
the sizes of the L2 and L3 cache respectively. In these ex-
periments, several per-WSS write ratios were used. In par-
ticular, we considered write ratios ranging over {0, 1/128,
1/64, 1/16, 1/4, 1/2, 1}. For each WSS we ran the test pro-
gram until 5,000 valid after-pm samples were collected (for
each preemption/migration category). Preemption lengths
were uniformly distributed in [0ms, 50ms]. As with the
schedule-sensitive method, experiments were repeated in an
idle system and in a system loaded with best-effort cache-
polluter tasks. More than 3.5 million valid samples were
obtained during more than 50 hours of tracing.

4.2 Results

Fig. 2 shows preemption and migration delays that were
measured using the synthetic method (the data is given nu-
merically in Appendix A). Each inset indicates CPMD val-
ues for preemptions and all different kinds of migrations
(L2, L3, memory) as a function of WSS, assuming a write

ratio of 1/4. The first column of the figure (insets (a,c))
gives delays obtained when the system was loaded with
cache-polluter tasks, while the second column (insets (b,d))
gives results that were recorded in an otherwise idle sys-
tem. The first row of the figure presents worst-case over-
heads, and the second row shows average overheads; the
error bars depict one standard deviation. Both axes are in
logarithmic scale. Note that these graphs display the differ-
ence between a post-pm and and a cache-warm WS access.
Declining trends with increasing WSSs (insets (b,c,d)) thus
indicate that the cache-warm WS access cost is increasing
more rapidly than the post-pm WS access.

Observation 1. The predictability of overhead measures is
heavily influenced by the size of L1 and L2 caches. This can
be seen in inset (c): as the WSS approaches the size of the
L2 cache (3072 KB, shared among 2 cores), the standard
deviation of average delays becomes very large (the same
magnitude of the measure itself) and therefore overhead
estimates are very imprecise. This unpredictability arises
because jobs with large WSSs suffer frequent L2- and L3-
cache misses in a system under load due to thrashing and
cache interference, and thus become exposed to memory
bus contention. Due to the thrashing cache-polluter tasks,
bus access times are highly unpredictable and L3 cache in-
terference is very pronounced. In fact, our traces show that

 0
 25
 50
 75

 100
 125
 150
 175
 200
 225
 250
 275

 0 3000 6000 9000 12000 15000 18000 21000 24000

ca
ch

e-
re

la
te

d
de

la
y

(u
s)

preemption length (us)

post-preemption samples (WSS=64kB, 25% writes)

(a)

 0
 25
 50
 75

 100
 125
 150
 175
 200
 225
 250
 275

 0 3000 6000 9000 12000 15000 18000 21000 24000

ca
ch

e-
re

la
te

d
de

la
y

(u
s)

preemption length (us)

post-L3-migration samples (WSS=64kB, 25% writes)

(b)

Figure 3: Scatter plot of observed dc samples vs. preemption
length in a system under load. (a) Samples recorded after a pre-
emption. (b) Samples recorded after an L3-migration. The plots
have been truncated at 25ms; there are no trends apparent in the
range from 25ms to 50ms.

jobs frequently incur “negative CPMD” in such cases be-
cause the “cache-warm” access itself is strongly interfered
with. This implies that, from the point of view of schedu-
lability analysis, CPMD is not well-defined for such WSSs,
since a true WCET must account for worst-case cache in-
terference and thus is already more pessimistic than CPMD,
i.e., actual CPMD effects are likely negligible compared to
the required bounds on worst-case interference.

Observation 2. In a system under load, there are no
substantial differences between preemption and migration
costs, both in the case of worst-case (inset (a)) and average-
case (inset (c)) delays. When a job is preempted or migrated
in the presence of heavy background activity, its cache lines
are likely evicted quickly from all caches and thus virtually
every post-pm access reflects the high overhead of refetch-
ing the entire WS from memory. Inset (a) shows that, in a
system under load, the worst-case delay for a 256 KB WSS
exceeds 1ms, while the cost for a 1024 KB WSS is around
5ms. Average-case delays (inset (c)) are much lower, but
still around 1ms for a 1024 KB WSS.

Observation 3. In an idle system, preemptions always
cause less delay than migrations, whereas L3- and memory
migrations have comparable costs. This behavior can be ob-
served in insets (b,d). In particular, if the WS fits into the

L1 cache (32 KB), then preemptions are negligible (around
1µs), while they have a cost that is comparable with that
of an L2 migration when the WSS approaches the size of
the L2 cache (still, they remain less than 1ms). Inset (d)
clearly shows that L2-migrations cause less delay than L3-
migrations for WSSs that exceed the L1-cache size (about
10µs for WSSs between 32 and 1024 KB). In contrast, L3-
and memory migrations have comparable costs, with a max-
imum around 3ms with 3072 KB WSS (inset (b)). Interest-
ingly, memory migrations cause slightly less delay than L3
cache migrations. As detailed below, this is most likely re-
lated to the cache consistency protocol.
Observation 4. The magnitude of CPMD is strongly re-
lated to preemption length (unless cache affinity is lost com-
pletely, i.e., in the case of memory migrations). This trend
is apparent from the plots displayed in Fig. 3. Inset (a)
shows individual preemption delay measurements arranged
by increasing preemption length, inset (b) similarly shows
L3-migration delay. The samples were collected using the
synthetic method with a 64 KB WSS and a write ratio of 1/4
in a system under load (similar trends were observed with
all WSSs ≤ 3072 KB). In both insets, CPMD converges to
around 50µs for preemption lengths exceeding 10ms. This
value is the delay experienced by a job when its WSS is
reloaded entirely from memory.3 In contrast, for preemp-
tion lengths ranging in [0ms, 10ms], average preemption
delay increases with preemption length (inset (a)), while
L3-migrations (in the range [0ms, 5ms]) progressively de-
crease in magnitude (inset (b)). The observed L3-migration
trend is due to the cache consistency protocol: if a job re-
sumes quickly after being migrated, parts of its WS are
still present in previously-used caches and thus need to be
evicted. In fact, if the job does not update its WS (i.e., if the
write ratio is 0), then the trend is not present.
Observation 5. Preemption and migration delays do not
depend significantly on the task set size. This can be ob-
served in Fig. 4, which depicts worst-case delay for the
schedule-sensitive method in a system under load as func-
tion of the TSS. The plot indicates CPMD for preemptions
and all migration types for WSSs of 1024, 512 and 256 KB
(from top to bottom).

Note that Fig. 4 is restricted to TSSs from 75 to 250
because, under G-EDF, only few task migrations occur for
small TSSs. Thus, the number of collected valid delays for
small TSSs is not statistically meaningful.

Furthermore, Fig. 4 shows that worst-case preemption
and migrations delays for the same WSS have comparable
magnitudes, thus confirming that, in a system under load,
preemption and migration costs do not differ substantially
(recall Fig. 2(a) and Observation 2).

3Due to space limitations, plots for memory and L2-migrations are
not shown. L2-migrations reveal a trend that is similar to the preemption
case, while memory migrations do not show a trend (samples are clustered
around 50µs delay regardless of preemption length).

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 60 80 100 120 140 160 180 200 220 240 260

ov
er

he
ad

 (u
s)

number of tasks

measured maximum overhead (25.00% writes)

a preemption
a migration through a shared L2 cache

a migration through a shared L3 cache
a migration through main memory

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 60 80 100 120 140 160 180 200 220 240 260

ov
er

he
ad

 (u
s)

number of tasks

measured maximum overhead (25.00% writes)

a preemption
a migration through a shared L2 cache

a migration through a shared L3 cache
a migration through main memory

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 60 80 100 120 140 160 180 200 220 240 260

ca
ch

e-
re

la
te

d
de

la
y

(u
s)

number of tasks

measured maximum overhead (25.00% writes)

Figure 4: Worst-case CPMD approximations as function of
TSS in a system under load (obtained with the schedule-sensitive
method). Lines are grouped by WSS: from top: WSS = 1024 KB,
WSS = 512 KB, WSS = 256 KB.

Interpretation. The setup used in the experiments de-
picted in Fig. 2(a,c) simulate worst-case scenarios in which
a job is preempted by a higher-priority job with a large
WSS that (almost) completely evicts the preempted job’s
WS while activity on other processors generates signifi-
cant memory bus contention. In contrast, insets (b,d) cor-
respond to situations in which the preempting job does not
cause many evictions (which is the case if it has a virtually
empty WS or its WS is already cached) and the rest of the
system is idle, i.e., insets (b,d) depict best-case scenarios.
Hence, Fig. 2(a) (resp., Fig. 2(c)) shows the observed worst-
case (resp., average) cost of reestablishing cache affinity in
a worst-case situation, whereas Fig. 2(b) (resp., Fig. 2(d))
shows the worst-case (resp., average) cost of reestablishing
cache affinity in a best-case situation.

Further note that, even though the synthetic method re-
lies on a background workload to generate memory bus
contention, the data shown in Fig. 2(a,c) also applies to sce-
narios in which the background workload is absent if the
real-time workload itself generates significant memory bus
contention.

This has profound implications for empirical compar-
isons of schedulers. If it is possible that a job’s WS is
completely evicted by an “unlucky” preemption, then this
(possibly unlikely) event must be reflected in the employed
schedulability test(s). Thus, unless it can be shown (or as-
sumed) that all tasks have only small WSSs and there is no
background workload (including background OS activity),
then bounds on CPMD should be estimated based on the
high-contention scenario depicted in Fig. 2(a,c).

Therefore, based on our data, it is not warranted to con-
sider migrations to be more costly than preemptions when
making worst-case assumptions (e.g., when applying hard
real-time schedulability tests). Further, unless memory bus
contention is guaranteed to be absent, this is the case even
when using average case overheads (e.g., when applying

soft real-time schedulability tests).

5 Impact on Schedulability
The schedulability of an algorithm with respect to a given
scenario is the fraction of task sets that can be shown to
meet their timing constraints. It estimates the probability
that a randomly chosen task set can be scheduled and is
a commonly employed method to compare scheduling al-
gorithms. For example, Baker [3] and Bertogna et al. [7]
studied schedulability as a function of system load to as-
sess various global and partitioned schedulers. As argued
in Sec. 1, schedulability studies should account for CPMD.
However, given that CPMD strongly depends on the WSS,
assuming any specific value for Dc introduces a bias on the
corresponding specific WSS. In this section, we describe a
method to integrate CPMD bounds into schedulability stud-
ies that overcomes this limitation. We start by discussing
the setup previously used in [8, 9, 10, 14], which in turn is
based on an earlier design by Baker [3], and then present
the corresponding WSS-agnostic extension.

Task set generation. A schedulability study is based on a
parametrized task set generation procedure. Said procedure
is used to repeatedly create (and test) task sets while vary-
ing the parameters over their respective domains. This en-
ables the schedulability under each of the tested algorithms
to be evaluated as a function of the task set generation pro-
cedure’s parameters.

Recall that a task Ti is defined by its WCET ei and pe-
riod pi. A task’s utilization ui = ei/pi reflects its required
processor share; a task set’s total utilization is given by∑

i ui. Our generation procedure depends on three parame-
ters: a probability distribution for choosing ui, a probability
distribution for choosing pi, and a utilization cap U .

Tasks are created by choosing ui and pi from their re-
spective distributions and computing ei. A task set is gen-
erated by creating tasks until the total utilization exceeds
U and by then discarding the last-added task (unless U is
reached exactly). Discarding the last task ensures that all
parameters stem from their respective distributions, but the
total utilization of the resulting task set may be less than U .
Alternatively, the last-added task’s utilization can be scaled
such that U is reached exactly. This procedure lends itself
to studying schedulability as a function of system load by
varying U from zero to m while assuming fixed choices for
utilization and period distributions (e.g., see [8, 9]).

Accounting for overheads. Task execution costs are com-
monly inflated to accomodate overheads caused by schedul-
ing decisions, context switches, timer ticks, job releases,
and other OS activity during the execution of one job [8, 9,
10, 14, 28]. Such system overheads must be accounted for
after a task set has been generated, since most overheads are
TSS-dependent [8, 9, 14].

This is in stark contrast to CPMD, which our experi-
ments revealed to be independent of TSS, as discussed in
Sec. 4 (Observation 5). Instead, bounding CPMD requires
knowledge of a task’s WSS. Thus, either a specific WSS
must be assumed throughout the study, or a WSS must be
chosen randomly during task set generation. Anticipating
realistic WSS distributions is a non-trivial challenge, hence
prior studies [8, 9, 14] focused on selected WSSs.
Implicit WSS. Instead, CPMD should be an additional pa-
rameter of the task set generation procedure, thus removing
the need for WSS assumptions. In this WSS-agnostic setup,
schedulability (i.e., the ratio of task sets deemed schedula-
ble for given parameters) is a function of two variables (U
andDc) and can therefore be studied assuming a wide range
of values for Dc (and thus WSS).

While conceptually simple and appealing due to the
avoidance of a WSS bias, this setup poses some practical
problems. Besides squaring the number of required sam-
ples, a “literal” plotting of the results requires a 3D projec-
tion, which renders the results virtually impossible to inter-
pret (schedulability plots routinely show four to eight indi-
vidual curves, e.g., [3, 8, 9]). To overcome this, we propose
the following aggregate performance metric instead.
Weighted schedulability. Let S(U,Dc) ∈ [0, 1] denote
the schedulability for a given U and Dc under the WSS-
agnostic setup, and let Q denote a set of evenly-spaced
utilization caps (e.g., Q = {1.0, 1.1, 1.2, . . . ,m}). Then
weighted schedulability W (Dc) is defined as

W (Dc) =

∑
U∈Q U · S(U,Dc)∑

U∈Q U
.

This metric reduces the obtained results to a two-
dimensional (and thus easier to interpret) plot without in-
troducing a fixed utilization cap. Weighting individual
schedulability results by U reflects the intuition that high-
utilization task systems have higher “value” since they are
more difficult to schedule. Note that W (0) = 1 for an opti-
mal scheduler (if other overheads are negligible).

Weighted schedulability offers the great benefit of
clearly exposing the range of CPMDs in which a particu-
lar scheduler is competitive. Recall from Sec. 1 that global
schedulers are provably superior if CPMD is negligible, but
not so if migrations are costly. At which point does parti-
tioning become the superior choice? This can be inferred
from the weighted schedulability, as is demonstrated next.
Example. Fig. 5 shows W (Dc) assuming soft timing con-
straints for four schedulers on our 24-core experimental
platform: G-EDF, P-EDF, and two C-EDF configura-
tions with clusters of two (resp., six) processors each cho-
sen based on L2 (resp., L3) cache sharing. Task param-
eters are uniformly distributed, with ui ∈ [0.5, 0.9] and
pi ∈ [3ms, 33ms]. This workload is of particular interest
since smooth video playback and interactive games fall in

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 250 500 750 1000 1250 1500

w
ei

gh
te

d
sc

he
du

la
bi

lit
y

[s
of

t]

cache-related preemption/migration delay (in us)

utilization uniformly in [0.5, 0.9]; period uniformly in [3, 33]

G-EDF
C-EDF (L3)
C-EDF (L2)

P-EDF

Figure 5: Weighted soft schedulability as a function of CPMD.

this range of periods, and high per-task utilizations can eas-
ily result from high-definition multimedia processing.

Fig. 5 clearly reveals the tradeoff between bin-packing
limitations under P-EDF and migration costs under G-
EDF. Let DG

c (resp., DP
c) denote a bound on CPMD under

G-EDF (resp., P-EDF), and let WG (resp., WP) denote
weighted schedulability under G-EDF (resp., P-EDF). In
Fig. 5, the G-EDF curve dominates the P-EDF curve. This
implies that G-EDF is a superior choice assuming equal
CPMD i.e., if DG

c = DP
c then WG(DG

c) ≥WP (DP
c).

More interesting is the case in which migrations are
costly, i.e., DG

c > DP
c . Suppose preemptions are negli-

gible, e.g., DP
c = 0µs: at which point does P-EDF become

preferable to G-EDF? The curve for P-EDF reveals that
WP (0) ≈ 0.55; by tracing G-EDF’s curve we find that
weighted schedulability under G-EDF drops below 0.55 at
DG

c ≈ 725µs. Thus, G-EDF is preferable to P-EDF, i.e.,
WG(DG

c) > WP (DP
c), if DG

c < 725µs.
These results should be combined with the actual ob-

served CPMD: under P-EDF, jobs incur only preemptions,
whereas they may incur both migrations and preemptions
under G-EDF. In a system under load, Fig. 2(a,c) reveals
that DG

c ≈ DP
c in both the average and the worst case, and

thus G-EDF is preferable for any WSS. In contrast, in an
idle system, DG

c > DP
c , but, as shown in Fig. 2(b,d), DG

c

does not exceed 725µs for WSSs smaller than 1024 KB,
and thus G-EDF is preferable for such WSSs.

This illustrates that weighted schedulability, in combi-
nation with actual CPMD measurements, can reveal inter-
esting tradeoffs between schedulers that cannot be inferred
from overhead-oblivious schedulability studies.

6 Conclusion
We have presented two methods for measuring CPMD: the
schedule-sensitive method can detect scheduler-dependent
cache-related delays since it does not alter the scheduling
policy, while the synthetic method rapidly produces large
numbers of samples by artificially triggering preemptions
and migrations. We have discussed strengths and weak-
nesses of the two approaches, and have demonstrated their

efficacy by reporting average and maximum CPMD for var-
ious WSSs on a 24-core Intel UMA machine with two lay-
ers of shared caches. Our findings show that, on our plat-
form, CPMD in a system under load is only predictable for
WSSs that do not thrash the L2 cache. We further observed
that preemption and migration delays did not differ signifi-
cantly under load, which calls into question the widespread
belief that migrations are necessarily more costly than pre-
emptions. In particular, our data indicates that (on our plat-
form) preemptions and migrations differ only little in terms
of both worst-case and average-case CPMD if cache affin-
ity is lost completely in the presence of either a background
workload or other real-time tasks with large WSSs. Addi-
tionally, our experiments showed that incurred CPMD de-
pends on preemption length, but not on task set size.

We have further proposed a method for incorporating
CPMD bounds into large-scale schedulability studies with-
out biasing results towards a particular WSS choice. Based
on weighted schedulability, this method allows regions to
be identified in which a particular scheduler is competitive.

Limitations. Since our methods are based on empirical
measurements, they cannot be used to derive safe bounds
on true worst-case delays. Further, our current implemen-
tation focuses on data caches (but could be extended to
apply to instruction caches) and cannot detect if samples
were disturbed by the processing of non-maskable inter-
rupts. Nonetheless, we believe that our approach offers a
good tradeoff between experimental complexity and accu-
racy, and hope that it will enable CPMD to routinely be con-
sidered in future evaluations of multiprocessor schedulers.

Future work. We plan to validate our experiments by sub-
stituting the TSC with performance counters to directly
measure cache misses. Further, we would like to apply our
measurement methodology to embedded and NUMA plat-
forms. Repeating these experiments in the presence of fre-
quent DMA transfers by I/O devices and atomic (i.e., bus-
locking) instructions could yield further insights. Based
on the observed trends, further research into bounds on
maximum per-task preemption lengths and non-preemptive
global schedulers is warranted.

Acknowledgement. We thank Alex Mills for his valuable
and helpful suggestions regarding the data analysis.

A CPMD Data
The CPMD data corresponding to the graphs shown in
Fig. 2 is given in Tables 1–4.

References
[1] A. Agarwal, J. Hennessy, and M. Horowitz. An analytical cache

model. ACM Transactions on Computer Systems, 7(2):184–215,

1989.
[2] J. Anderson, V. Bud, and U. Devi. An EDF-based scheduling algo-

rithm for multiprocessor soft real-time systems. In Proceedings of
the 17th Euromicro Conference on Real-Time Systems, pages 199–
208, 2005.

[3] T. Baker. A comparison of global and partitioned EDF schedulability
tests for multiprocessors. Technical Report TR-051101, Florida State
University, 2005.

[4] T. Baker and S. Baruah. Schedulability analysis of multiprocessor
sporadic task systems. In Handbook of Real-Time and Embedded
Systems. Chapman Hall/CRC, 2007.

[5] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Propor-
tionate progress: A notion of fairness in resource allocation. Algo-
rithmica, 15(6):600–625, 1996.

[6] S. Basumallick and K. Nilsen. Cache issues in real-time systems.
In Proceedings of the 1st ACM SIGPLAN Workshop on Languages,
Compilers, and Tools for Real-Time Systems, 1994.

[7] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedulability
analysis of EDF on multiprocessor platforms. In Proceedings of the
17th Euromicro Conference on Real-Time Systems, pages 209–218,
2005.

[8] B. Brandenburg and J. Anderson. On the implementation of global
real-time schedulers. In Proceedings of the 30th IEEE Real-Time
Systems Symposium, pages 214–224, 2009.

[9] B. Brandenburg, J. Calandrino, and J. Anderson. On the scalability
of real-time scheduling algorithms on multicore platforms: A case
study. In Proceedings of the 29th IEEE Real-Time Systems Sympo-
sium, pages 157–169, 2008.

[10] B. Brandenburg, H. Leontyev, and J. Anderson. Accounting for in-
terrupts in multiprocessor real-time systems. In Proceedings of the
15th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 273–283, 2009.

[11] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and A. Wellings.
Adding instruction cache effect to schedulability analysis of preemp-
tive real-time systems. In Proceedings of the 2nd IEEE Real-Time
Technology and Applications Symposium, pages 204–219, 1996.

[12] J. Calandrino. On the Design and Implementation of a Cache-Aware
Soft Real-Time Scheduler for Multicore Platforms. PhD thesis, Uni-
versity of North Carolina at Chapel Hill, 2009.

[13] J. Calandrino, J. Anderson, and D. Baumberger. A hybrid real-time
scheduling approach for large-scale multicore platforms. In Proceed-
ings of the 19th Euromicro Conference on Real-Time Systems, pages
247–256, 2007.

[14] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson.
LITMUSRT: A testbed for empirically comparing real-time multi-
processor schedulers. In Proceedings of the 27th IEEE Real-Time
Systems Symposium, pages 111–123, 2006.

[15] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah. A categorization of real-time multiprocessor scheduling
problems and algorithms. In Handbook of Scheduling: Algorithms,
Models, and Performance Analysis. Chapman and Hall/CRC, 2004.

[16] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread
cache contention on a chip multi-processor architecture. In Pro-
ceedings of the 11th International Symposium on High-Performance
Computer Architecture, pages 340–351, 2005.

[17] H. Cho, B. Ravindran, and E. D. Jensen. An optimal real-time
scheduling algorithm for multiprocessors. In Proceedings of the 27th
IEEE International Real-Time Systems Symposium, pages 101–110,
2006.

[18] F. M. David, J. C. Carlyle, and R. H. Campbell. Context switch
overheads for Linux on ARM platforms. In Proceedings of the 2007
Workshop on Experimental Computer Science, 2007.

[19] U. Devi. Soft Real-Time Scheduling on Multiprocessors. PhD thesis,
University of North Carolina, Chapel Hill, North Carolina, 2006.

[20] N. Guan, M. Stigge, W. Yi, and G. Yu. Cache-aware scheduling and
analysis for multicores. In Proceedings of the 7th ACM International
Conference on Embedded Software, pages 245–254, 2009.

WSS (KB) Preemption Migrat. through L2 Migrat. through L3 Migrat. through Mem.
4 17.52 19.09 18.94 21.58
8 35.98 32.89 35.48 32.55

16 69.76 76.13 69.73 61.71
32 136.16 147.49 159.10 137.55
64 248.86 248.82 252.63 244.07

128 525.08 520.77 484.50 520.55
256 1,027.77 1,020.08 1,031.80 1,088.35
512 2,073.41 2,064.59 1,914.32 2,333.64

1,024 3,485.44 4,241.11 4,408.33 3,935.43
2,048 7,559.04 7,656.31 8,256.06 8,375.53
3,072 9,816.22 10,604.52 9,968.44 12,491.07
4,096 12,936.70 14,948.87 12,635.93 15,078.12
8,192 26,577.31 25,760.44 24,923.14 26,091.24

12,288 37,139.30 39,559.55 36,923.48 36,688.75

Table 1: CPMD data. Worst-case delay (in µs) in a system under load. This table corresponds to Fig. 2(a).

WSS (KB) Preemption Migrat. through L2 Migrat. through L3 Migrat. through Mem.
4 0.49 3.38 4.27 3.98
8 0.45 5.99 8.08 7.27

16 0.65 11.22 15.53 13.50
32 0.79 17.28 31.01 26.10
64 0.97 17.15 60.91 51.33

128 1.10 14.95 120.47 98.25
256 19.05 30.60 241.68 199.54
512 11.46 17.88 481.52 397.67

1024 30.03 52.63 935.29 784.89
2048 239.45 235.94 1,819.50 1,567.65
3072 567.54 713.33 2,675.71 2,287.87
4096 283.65 288.22 1,523.32 1,169.90
8192 60.23 47.90 522.20 606.40

12288 107.68 109.94 472.15 690.81

Table 2: CPMD data. Worst-case delay (in µs) in an idle system. This table corresponds to Fig. 2(b).

[21] D. Hardy and I. Puaut. Estimation of cache related migration delays
for multi-core processors with shared instruction caches. In Proceed-
ings of the 17th International Conference on Real-Time and Network
Systems, pages 45–54, Paris France, 2009.

[22] L. Ju, S. Chakraborty, and A. Roychoudhury. Accounting for cache-
related preemption delay in dynamic priority schedulability analysis.
In Proceedings of the 2007 Conference on Design, Automation and
Test in Europe, pages 1623–1628, 2007.

[23] C.-G. Lee, K. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong,
C. Y. Park, M. Lee, and C. Kim. Bounding cache-related preemption
delay for real-time systems. IEEE Transactions on Software Engi-
neering, 27(9):805–826, 2001.

[24] H. Leontyev. Compositional Analysis Techniques For Multiprocessor
Soft Real-Time Scheduling. PhD thesis, University of North Carolina
at Chapel Hill, 2010.

[25] C. Li, C. Ding, and K. Shen. Quantifying the cost of context switch.
In Proceedings of the 2007 Workshop on Experimental Computer
Science, 2007.

[26] C. Liu and J. Layland. Scheduling algorithms for multiprogramming
in a hard real-time environment. Journal of the ACM, 30:46–61,

January 1973.

[27] F. Liu, F. Guo, Y. Solihin, S. Kim, and A. Eker. Characterizing and
modeling the behavior of context switch misses. In Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, pages 91–101, 2008.

[28] J. Liu. Real-Time Systems. Prentice Hall, 2000.

[29] J. C. Mogul and A. Borg. The effect of context switches on cache
performance. ACM SIGPLAN Notices, 26(4):75–84, 1991.

[30] H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate estima-
tion of cache-related preemption delay. In Proceedings of the 1st
IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, pages 201–206, 2003.

[31] H. Ramaprasad and F. Mueller. Tightening the bounds on feasible
preemptions. ACM Transactions on Embedded Computing Systems,
to appear, 2008.

[32] A. Sarkar, F. Mueller, H. Ramaprasad, and S. Mohan. Push-assisted
migration of real-time tasks in multi-core processors. In Proceed-
ings of the 2009 ACM SIGPLAN/SIGBED conference on Languages,
Compilers, and Tools for Embedded Systems, pages 80–89, 2009.

Preemption Migrat. through L2 Migrat. through L3 Migrat. through Mem.
WSS (KB) Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.

4 5.24 2.31 5.37 2.36 5.66 2.07 5.77 2.08
8 9.14 4.18 9.24 4.21 9.93 3.69 10.09 3.82

16 17.02 8.04 17.05 7.77 18.58 7.00 18.78 7.18
32 32.88 15.94 32.93 15.73 35.82 13.96 35.99 14.30
64 65.05 31.38 65.33 31.90 70.72 27.87 70.50 28.02

128 128.64 62.08 127.09 61.22 137.35 52.48 141.05 58.20
256 248.81 117.10 246.34 119.89 267.73 106.19 272.56 115.37
512 478.45 239.08 476.95 251.41 507.27 227.87 509.18 245.06

1024 739.20 515.18 733.27 624.26 772.68 544.80 810.37 641.08
2048 740.10 1,200.93 773.22 1,409.55 837.53 1,373.93 853.27 1,605.60
3072 355.76 1,781.11 400.88 2,021.39 377.96 1,974.79 483.20 2,373.09
4096 247.88 2,456.97 291.93 2,756.90 274.51 2,622.08 350.07 3,118.26
8192 212.90 4,793.77 374.45 5,230.35 436.19 5,153.05 282.28 5,797.23

12288 201.20 7,211.18 333.80 7,683.50 467.50 7,485.35 274.23 8,122.10

Table 3: CPMD data. Average-case delay (in µs) in a system under load. This table corresponds to Fig. 2(c).

Preemption Migrat. through L2 Migrat. through L3 Migrat. through Mem.
WSS (KB) Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.

4 0.13 0.06 2.91 0.18 3.98 0.06 3.48 0.12
8 0.11 0.06 5.31 0.39 7.75 0.07 6.54 0.15

16 0.17 0.09 10.19 0.72 15.17 0.10 12.62 0.24
32 0.26 0.10 14.41 1.24 30.11 0.14 24.82 0.38
64 0.29 0.15 14.21 1.29 59.79 0.22 49.18 0.72

128 -0.17 0.30 12.89 1.08 118.23 0.47 94.60 1.40
256 0.83 0.45 15.02 1.14 236.94 1.43 192.42 2.88
512 1.62 0.66 13.96 1.30 477.22 1.69 384.35 4.48

1024 3.85 1.45 18.28 1.70 921.61 4.79 769.80 7.93
2048 26.21 15.80 45.61 16.03 1,721.14 130.92 1,459.52 120.58
3072 74.04 42.28 104.26 49.47 1,867.61 246.62 1,501.23 229.21
4096 39.66 23.96 51.29 24.75 1,156.36 153.95 790.41 157.98
8192 1.60 9.06 0.70 9.60 468.26 14.14 482.73 66.05

12288 5.84 13.85 6.62 12.16 385.62 24.14 420.76 57.21

Table 4: CPMD data. Average-case delay (in µs) in an idle system. This table corresponds to Fig. 2(d).

[33] A. Srinivasan and J. Anderson. Optimal rate-based scheduling
on multiprocessors. Journal of Computer and System Sciences,
72(6):1094–1117, 2006.

[34] A. Srinivasan, P. Holman, J. Anderson, and S. Baruah. The case for
fair multiprocessor scheduling. In Proceedings of the 17th Interna-
tional Symposium on Parallel and Distributed Processing, 2003.

[35] G. Stamatescu, M. Deubzer, J. Mottok, and D. Popescu. Migration
overhead in multiprocessor scheduling. In Proceedings of the 2nd
Embedded Software Engineering Conference, pages 645–654, 2009.

[36] J. Stärner and L. Asplund. Measuring the cache interference cost in
preemptive real-time systems. ACM SIGPLAN Notices, 39(7):146–
154, 2004.

[37] J. Staschulat and R. Ernst. Scalable precision cache analysis for real-
time software. ACM Transactions on Embedded Computing Systems,
6(4):25, 2007.

[38] V. Suhendra and T. Mitra. Exploring locking & partitioning for pre-
dictable shared caches on multi-cores. In Proceedings of the 45th
annual Design Automation Conference, pages 300–303, 2008.

[39] D. Thiebaut and H. S. Stone. Footprints in the cache. ACM Transac-
tions on Computer Systems, 5(4):305–329, 1987.

[40] D. Tsafrir. The context-switch overhead inflicted by hardware inter-
rupts. In Proceedings of the 2007 Workshop on Experimental Com-
puter Science, 2007.

[41] R. A. Uhlig and T. N. Mudge. Trace-driven memory simulation:
A survey. Performance Evaluation: Origins and Directions (LNCS
1769), pages 97–139, 2000.

[42] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. The
worst-case execution-time problem—overview of methods and sur-
vey of tools. ACM Transactions on Embedded Computing Systems,
7(3):1–53, 2008.

[43] J. Yan and W. Zhang. WCET analysis for multi-core processors with
shared L2 instruction caches. In Proceedings of the 14th IEEE Real-
Time and Embedded Technology and Applications Symposium, pages
80–89, 2008.

