
TESTING EMBEDDED SYSTEMS SOFTWARE USING OPEN SOURCE
VIRTUAL PLATFORMS

Andrea Bastoni
SPRG - University of Rome “Tor Vergata”

Roma, Italy
bastoni@sprg.uniroma2.it

Patrizio Boschi
patrizio.boschi@gmail.com

Fabrizio Batino, Christian Di Biagio, Luca Recchia
MBDA-Italy S.p.A.

Roma, Italy
{fabrizio.batino, christian.di-biagio, luca.recchia}@mbda.it

ABSTRACT
This paper studies the use of open source virtualization sys-
tems to perform functional testing of embedded systems
software directly on developer machines. Problems related
to software testing on embedded platforms are analyzed
and an open source virtual target platform architecture is
presented. A development process is devised to extend the
standard emulated device set of virtualization solutions to
include specific-purpose virtual devices. A prototype im-
plementation of the proposed architecture is presented and
functional as well as performance issues are analyzed.

KEY WORDS
Virtualization, testing, embedded systems

1 Introduction

The commonly used software development process is a dif-
ficult task to perform when the developed software has to
be run on an embedded system.

The main difficulties lie in the testing phases, as typ-
ical target machines differ sharply from development ma-
chines, which are usually normal consumer boxes.

Furthermore, due to cost, availability or developing
reasons, the target system may not always be ready by
integration or testing time. These factors cause heavy
bottlenecks when multiple developers work on the to-be-
developed application and need to concurrently access the
target system for testing and integration.

1.1 Motivation

When solutions like remote testing, cross-testing and tar-
get platform assignment among developers are not viable
due to, for example, the above-mentioned constraints, the
problem ofapplication testing on a target platform can be
faced by using avirtual platform (or virtual machine, guest
machine) based approach.

The virtual platform approach to embedded soft-
ware testing could be particularly successful in all those
industrial contexts where hardware is co-developed with

software, and hardware platform prototypes cannot be
promptly available to software developers. By using avir-
tual target platform, every developer could access one or
more virtual target platforms directly on his/her worksta-
tion (usually a desktop PC). This could greatly reduce test-
ing and integration phase duration, as real target assign-
ment problems (and subsequent bottlenecks) can thus be
avoided.

Moreover, the virtual machine (virtual target) can be
configured toexactly reproduce the target configuration,
and specific hardware devices, usually available only on
the real target, can be fully emulated in the virtual machine.
Therefore, virtual machines can provide earlier availability
and better accessibility to the target platform, thus allowing
an increase in productivity.

1.2 State of the art

At present, existing commercial virtualization-based solu-
tions are well established and used for embedded software
development and testing.

Virtutech Simics for Virtualized System Develop-
ment [18, 22] andCoWare Virtual Platform [9] are well-
known commercial products for hardware and software in-
tegration and testing on virtual target platforms. Commer-
cial VMware [15] solutions are also common in the indus-
trial world to perform testing on generic x86 target plat-
forms (i.e., no specific hardware devices are needed on the
target platform).

The open source world does not have a tailored
solution for embedded software development yet, but
it offers a full range of virtual machines: Xen [23],
KVM [20], QEMU [5], KQEMU [4], Linux VServer [21]
and OpenVZ [13] are common and widespread products.
However, not all of them can be successfully employed
to perform functional testing of embedded software or to
emulate specific hardware behaviours. In fact, many of
these products are developed for completely different pur-
poses (e.g., server consolidation, enforce applications iso-
lation. . . ).

The rest of this paper is organized as follows. In sec-



tion 2, we present requirements and objectives of virtual
target platforms. In section 3, we analyze two virtualization
technologies that can be exploited to realize virtual target
platforms. In section 4, we present our virtual platform ar-
chitecture and we tackle non-functional and performance
problems of the architecture; in this section we also de-
scribe our virtual device development process. In section 5,
we present a prototype implementation of the architecture,
we show how functional testing can be performed on vir-
tual platforms and we discuss prototype performance. In
section 6, we briefly present debugging techniques on open
source virtual platforms. We draw conclusions conclude in
section 7.

2 Goals and requirements of a target plat-
form emulator

2.1 Accurate hardware and driver abstraction

The main requirement of a virtual platform is tofaith-
fully emulate specific-purpose target platform hardware
(CPU(s), memory, devices). This emulation can be per-
formed on developer boxes using virtualization technolo-
gies.

Furthermore, the operating system configuration of
the virtual platform (virtual machineand specific purpose
hardware emulation) should closely match the configura-
tion of the target platform. In particular, the operating sys-
temdriver set should be identical. The need of a coherent
driver set is due to two different key factors:driver bugs
anddriver programming interface implementation.

As pointed out by some authors [3] and also as con-
firmed by our experiments [7], the/driver section of
the Linux kernel accounts for themajority of the bugs of its
whole source code. If the virtual target platform uses a dif-
ferent driver sets from the real target platform, then thereis
a nonnegligible probability that target driver-related faults
will not be detected while testing the application using the
driver set of the virtual target platform.

In different driver sets, drivers could also consider-
ably change as thedriver programming interface is not very
strict about the features that should be implemented.

2.2 Increase target platform availability for functional
testing

The target platform is the best place for performing func-
tional and non-functional application tests. Unfortunately,
it is often unfeasible to assign a real (embedded) target plat-
form to each developer and, therefore, the target platform
must be shared among developers, leading to heavy bottle-
necks that could reduce productivity.

The direct availability of avirtual target platform on
the developer’s box decreases the amount and the effort of
functional testing that should be performed on the real tar-
get platform. Bottlenecks in the scheduling of the real tar-

Figure 1. Real embedded system schema

get platform (Figure 1) can be greatly reduced if the de-
veloper is able to perform most of testing phases on virtual
embedded systems (Figure 2), interleaving testing on the
platform and code editing (using her / his favourite pro-
gramming tools).

3 Platform virtualization and emulation

Platform virtualization and emulation are broad terms re-
ferring to the process of hiding the physical resources of
a computing platform to the operating system, and of ex-
posing instead an abstract or emulated (possibly different)
platform.

Solutions like paravirtualization (e.g. Xen paravir-
tualization [17]) and operating system level virtualization
(e.g. OpenVZ [13], Linux VServer [21]) can guarantee
good performance in many contexts (e.g. server consol-
idation), but these solutions create a platform abstraction
that is similar yetnot identical to a real one.

Paravirtualization and operating system level virtual-
ization are therefore unsuitable for the aims of this article.
In fact, it would be meaningless to perform functional test-
ing on a virtual platform whose devices and Board Support
Package (BSP) drivers differ from the real one.

Instead,system emulation andfull virtualization tech-
nologies (briefly described in next paragraphs) allow for a
faithful emulation of real devices and real drivers and are
therefore suitable solutions to our problem.

3.1 System emulation

System emulation allows to simulate both hardware and
software components of a system. When performing sys-
tem emulation, all CPU instructions executed by the virtual
machine aretranslated and emulated on the host CPU. Fur-
thermore, every low-level operation on hardware devices is
simulated as well.

In spite of the huge performance overhead inherently
implied by this technology, system emulation gives the op-
portunity of faithfully simulating the behaviour of a com-
plete physical platform.



Examples of open source system emulators are Bochs
[12] and QEMU [5], which emulate x86 32 and x86 64
architectures. QEMU supports additional host and guest
system based on SPARC, PowerPC, MIPS and ARM archi-
tectures. QEMU also comes with a set of emulated device
models, thus allowing to run non-modified guest systems
which rely on widespread devices or legacy devices.

3.2 Full Virtualization

A significant performance improvement with respect to
system emulation can be achieved by avoiding the trans-
lation of all CPU instructions.

Full Virtualization technologies allow the complete
decoupling of virtual machines applications and kernel
from the physical hardware (as in system emulation), but
also allow virtual machines to directly execute most of their
instructions on physical CPU(s).

Virtual machines native execution is only possible if
the virtual machine (guest) architecture is identical to the
host (Virtual Machine Monitor) one. Given the widespread
diffusion of the x86 architecture, virtualization of x86 sys-
tems over x86 hosts is the most common form of full virtu-
alization.

The two main techniques used to achieve full virtual-
ization of guest machines aretrap-and-emulate andbinary
translation [1]. In 2006, AMD [2] and Intel [16] started de-
veloping architectural changes in their CPUs to support an
easier virtualization on x86 architecture. This changes are
commonly referred to ashardware support to virtualization
and are included in most modern x86 processors.

VMware [15] and Parallels [19] are commercial prod-
ucts that use full virtualization techniques. Xen HVM [23]
and KVM [20] are open source solutions which use
full virtualization by exploiting the “hardware support”.
KQEMU [4] uses full virtualization and directly executes
guest user-code on the real hardware, while it runs guest
kernel-code through a QEMU emulation.

4 Open source virtual platform architecture

The proposed virtual platform architecture makes use of a
layered structure (Figure 2) to decouple developer’s ma-
chine hardware from the virtual hardware seen by each vir-
tual embedded system.

The platform uses open source virtualization solu-
tions (KVM, KQEMU, Xen HVM and QEMU) to imple-
ment the core virtualization layer, while we extended the
emulated device set to include specific-purpose hardware
device emulations. This allows to show to guest operat-
ing system a faithful emulation of the embedded platform
hardware.

In particular, we extended the QEMU virtual de-
vice set, as all the analyzed virtualization solutions ex-
ploit QEMU device model to realize emulated device ab-
stractions. The virtual device set needs to be extended as

Figure 2. Virtual platform system schema

QEMU only offers a limited choice of emulated hardware
devices and these devices are mostlyCOTS hardware de-
vices, while specific-purpose hardware devices found on
embedded platforms are not available.

Therefore, most of the difficulties in realizing an open
source virtual platform lie in the development of suitable
device emulations that can be exported in virtual embedded
systems. However, by firstly developing the device emula-
tor in QEMU, it is possible to perform this process only
once, as QEMU virtual device can be easily adapted to fit
other virtualization solutions

4.1 Performance and non-functional aspects

Through the virtualization of the physical (embedded) plat-
form we mainly aim at performingfunctional software
testing; yet, there are situations wherenon-functional and
performance-related aspects must be taken into account in
order to perform correct testing. In those situations, the
huge overhead paid by QEMU as system emulator may in-
validate the testing of the software and therefore the use
of virtual platforms is not advisable. However, if full vir-
tualization techniques are employed, some non-functional
and performance testing activities can still be performed on
virtual platforms.

To obtain an overview of the performance loss of sys-
tem emulation with respect to full virtualization, we per-
formed a series of tests using application-level benchmarks
(glibc-2.18 building, DaCapo benchmark[6] and Whet-
stone benchmark [10]).

In the glibc-building benchmark theglibc-2.18
source is compiled (usinggcc-4.1.2 compiler) through
themake all command.

The DaCapo benchmark suite (2006-10-MR2) “con-
sists of a set of open source, real world applications
with non-trivial memory loads”[14] which executes in-



Figure 3. Native, QEMU, KVM, KQEMU performance
with glibc build and DACAPO benchmark

side a Java Virtual Machine (JVM). We have selected
from the DaCapo benchmark suite the benchmarksantlr,
eclipse, xalan.

The Whetstone benchmark generates a
computationally-intensive workload by means of floating
point operations.

The tests are realized on a developer machine with an
Intel Core2 Quad Q6600 (2.4 GHz) processor, 1 GB RAM
DDR2 and 250GB SATA disk. The operating system is a
Gentoo Linux with 2.6.24 kernel.

As it can be seen in Figure3 and 4, KVM is able
to reach between 50 and 80% of non-virtualized (native)
performance, while KQEMU only reaches between 20 and
40% in many benchmarks.

However, the full virtualization solutions always per-
form better than system emulation. In fact, the results ob-
tained by QEMU are significantly lower if compared with
KVM and KQEMU: system emulation solutions pay the
huge overhead of instruction emulation and QEMU never
obtains more than 10% of non-virtualized performance. A
more detailed and complete survey of the performance of
the analyzed virtualization solutions can be found in [7].

Virtualization technologies also affect the perfor-
mance of virtual (emulated) devices. In fact, nominal per-
formance of virtual devices equal those of real devices,
while real performance are heavily influenced by the vir-
tualization solution in use [8].

Although the very high performance overhead,
QEMU is, at the moment, the only viable open source
choice when the target architecture is not the x86 architec-
ture. QEMU can in fact (as system emulation technology)
emulate ARM, SPARC, MIPS and PowerPC guests over
x86, x8664 and PowerPC hosts. In addition, if same de-
vices are supported by different architectures, then QEMU
emulation of the devices only needs a minimal effort to be

Figure 4. Native, QEMU, KVM, KQEMU performance
using Whetstone benchmark

ported on guest with different architecture.
We do not delve futher into the issues related to

emulation of different architectures as our target systems
are Single Board Computers (Concurrent Technologies
VP417) with an Intel Core 2 Duo L7400 processor, and
developer boxes are x86 desktop PCs. We can therefore
exploit full virtualization techniques to achieve better per-
formance than system emulation.

A limitation of the proposed virtual platform ap-
proach is that it cannot be used when precise timing esti-
mations (e.g. testing of hard real-time applications) are re-
quired for performing software testing. In fact, full virtual-
ization technologies and system emulators such as QEMU
can only reproduce the “semantics” of the requested guest
instructions, while precise timing estimations would re-
quire also the emulation of the precise “syntax” of the
real instructions. To solve these kind of problems, cycle-
accurate simulators (such as PTLsim [24]) should be used.

4.2 Using QEMU for virtual device development

As already introduced in previous sections, QEMU is an
appropriate choice for the development of device emula-
tors. Unfortunately, QEMU does not offer a clean develop-
ment framework — development process, device-model-
aided design, IDE — such as those of commercial counter-
parts (e.g., Virtutech offers a Device Modeling Language
(DML) [11] to ease the development of device models).
However, QEMU provides a complete set of APIC func-
tions that can be successfully exploited to develop complete
device emulations.

Next, we will define a development process that can
be used in the development of virtual devices in the QEMU
environment.

Development strategy When realizing device emula-
tions, the main objective is to develop a device abstraction
that faithfully simulates the hardware device features; in



particular, the OS guest driver should not be able to spot
any differences in the interaction between emulated or real
device.

We consider the real device as ablack box with a clear
interface, which is generally well documented in either de-
vice datasheets or in the programmer’s reference manual.
The main components of this interface are in fact the hard-
ware registers and the interrupt request lines offered by the
real device.

The virtual device is then developed as a QEMU mod-
ule which exposes the same interface of the real device, but
that implements the device logic atsoftware level through
callbacks registered with QEMU API initialization func-
tions. For instance, in the emulation of a PCI device, a
callback is called whenever a virtual machine guest driver
tries to access a register (PCI Configuration Register, Mem-
ory Mapped I/O Register) or an I/O port of the device. In
the device emulation (QEMU host side), registers are in
fact simulated using normal memory locations (from sim-
ple variables to complex structures and arrays). Every ac-
cess to an emulated register is intercepted to decide whether
side effects have to be emulated.

The development of a virtual device can often be sim-
plified by ignoring all register transfer level details and sub-
tle hardware level logic (thus reducing the amount of de-
vice hardware documentation to read) and by realizing in
the emulation only the main hardware logic.

We have identified a three-phases development
strategy (Figure 5).

1. A simple stub of the real device is built; this stub
should at least be detected by the guest operating sys-
tem. The stub generally includes the internal state of
the device and all the registers (PCI, memory, etc.)
that could be accessed by the operating system.

2. The driver — device communication infrastructure
(command handling and callback registration) is
added.

3. The devicecore logic features are developed and
linked to internal state, registers and command han-
dlers.

Writing a device emulator with strict functional and
quality requirements can be a difficult task when complex
devices are involved. At emulation level, complexity is
mainly related to the interception and simulation of the side
effects due to register access and bit-field modifications.
We have found it useful to develop first only the most im-
portant features of the device, while adding non-core func-
tionalities in a second phase.

5 Prototype platform using the Intel Watch-
dog 6300ESB device

We have successfully applied the strategy above in the de-
velopment of a device emulator of the Intel Watchdog timer

Figure 5. Development process using QEMU

(WDT) 6300 ESB found on our target x86 platforms and
we have integrated the emulated device in the analyzed vir-
tualization solutions. The result is a virtual platform archi-
tecture which is able to emulate WDT operations directly
on developer’s boxes.

The watchdog timer is a countdown hardware timer
device that can be (re)programmed by the OS at periodic
time intervals. If the OS fails to do so and the watchdog
countdown timer reaches zero, the WDT reacts with some
pre-programmed actions (e.g. rebooting the machine).

The watchdog timer is a good example of a device
which is commonly found on most target platforms, but on
none of the developer platforms; without a virtual platform,
application testing which involves the WDT cannot be per-
formed on developer platforms and need to be done on the
target platform.

The watchdog emulator is developed by using
QEMU. We create a full replica of the target OS configura-
tion and filesystem in a QEMU virtual machine and we use
KQEMU and KVM to speed up QEMU execution. Tests
using Xen HVM are currently ongoing.

As already noted in section 4.1, the use of a full vir-
tualization technology to speed up the execution of QEMU
device emulators does not affect the development of the de-
vice emulators themselves.

The WDT PCI Configuration Registers are imple-
mented through simple arrays of variables, which are ini-
tialized with values taken from the datasheets, from the tar-
get machine (e.g.lspci) or from the reverse engineer-
ing of the Linux driver. All the arrays are included in aC
structure which represents the watchdog device in the em-
ulation. This structure also includes an amount of informa-
tion related to WDT logical status and available resources
(e.g. the current value of the countdown timer, a pointer to
QEMU virtual timers. . . ).

When the virtual target platform boots up, QEMU
calls our device emulator C init-function, which in turn
initializes the device and registers all the callbacks with



Figure 6. Execution flow of a request to WDT emulator

QEMU. QEMU does not offer a mechanism to dynamically
load a device model after virtual platform initialization and
any new device initialization function should be statically
called from inside QEMU boot function or should be indi-
rectly called by adding a new command line parameter.

The WDT hardware timer logic is simulated by us-
ing software timers. Their time resolution (≈ 100 ms) is
in fact more than sufficient to effectively support applica-
tion requirements. The typical execution flow of a request
directed to the WDT emulator is shown in Figure6.

The relatively low complexity level of the WDT hard-
ware (only 24 registers) has led to a lightweight watchdog
emulator which can fully emulate all the features of the real
hardware. The size of the WDT emulator is approximately
600 effective lines of code (SLOCs) with 150 lines of code
comments. The ratio between Linux WDT 6300ESB driver
size (around 360 SLOCs) and WDT emulator size complies
with the estimated ratio between the size of Linux device
drivers and their correspondent emulation in QEMU [7].

Testing The testing of the platform including the newly
developed device emulator can be accomplished either
from thehost side or from theguest side. In the former (in
the QEMU environment), the device emulator is seen as a
component of the QEMU system and the tests performed
here are mainly unit testing and debug of the various devel-
oped functions.

On the guest side, the device emulator is seen as a
real device integrated in the virtual platform and this testing
phase can be carried out only through the exported device
interface.

The testing of the device through its interface is gener-
ally done in two steps: first, we use ad-hoc user space appli-
cations which indirectly test all device emulation features
through the OS driver interface. In detail, the user-space
application opens the device front-end (/dev/watchdog
node) and repeatedly issues all theioctl commands sup-
ported by the Linux driver and by the WDT device. For
each command, the behaviour of the emulated WDT device
is compared to the behaviour of the real watchdog timer.

In the second phase of the testing process, we run the
application suites commonly used to access real watchdog

Figure 7. QEMU, KQEMU, KVM performance using
WDT benchmark

timer device features. Without a virtual platform, these ap-
plications need to be run on the real platform, while we
were able to reproduce the identical real WDT behaviour
on the virtual platform running on developer’s machine.

Performing testing activities on the virtual platform
is just as easy as performing them on the real platform.
In fact, the testing of the WDT emulator allowed us to
discover a bug in the Linux watchdog timer driver which
caused a non correct reinitialization of one register value
upon rebooting.

Performance aspects Although performing functional
testing on virtual target platform is our main target, we
evaluated how different virtualization technologies affect
performance of the platform.

We developed a benchmark that emulates an appli-
cation using WDT. The benchmark performs one mil-
lion runs, each run being composed by500 floating point
userspace operations (emulating the behaviour of Whet-
stone benchmark) and10 kernelspace operations on the
WDT device (10 register operations). It is important to
underline that10 register operations are a high number of
operations for the WDT device as applications generally
perform only 2 - 3 operations on the WDT.

The benchmark measures the minimum execution
time needed to perform one run. The minimum execution
time has been chosen as this is the value obtained when
the test is not preempted during its execution. One run ex-
ecution time in the non-virtualized system takes64µs, on
average.

Figure 7 shows performance (normalized against non-
virtualized Linux) of QEMU, KQEMU and KVM virtual-
ization solutions. A comparison of Figure 4 and Figure 7
shows that operations on the virtual device does not sub-
stantially change the performance of KVM and QEMU vir-
tualization solutions. In fact, KVM performance are very
close to non-virtualized one (the lower KVM performance



Figure 8. QEMU, KQEMU, KVM performance using
WDT benchmark (Increasing ratio of userspace operations)

in Figure 4 can be explained as our floating point load is
less demanding than Whetstone’s load of50000 floating
point operations), while QEMU slowdown (90%) is simi-
lar to the slowdown obtained in the Whetstone benchmark.
KQEMU performance is interesting as KQEMU can di-
rectly execute only userspace instructions, while it needs
to emulate all kernelspace instructions (access to WDT is
performed in kernelspace). Therefore, as can be seen in
Figure 8 (which shows performance for an increasing num-
ber of userspace operations — 100, 500, 1000 floating
point operations, 10 device operations) KQEMU perfor-
mance increases as the number of floating point userspace
operations increases, while the performance of both KVM
and QEMU remains stable. Thus KQEMU performance is
heavily influenced by the number of userspace operations
performed, while, as KVM and QEMU, is not affected by
operations on the virtual WDT .

6 System debugging

On real target platforms it is often possible to perform sys-
tem debugging through JTAG-like technologies. On vir-
tual platforms, virtual hardware debugging can be easily
accomplished by directly accessing the internal emulator
state: it is for example possible to anytime investigate an
emulated register status (a variable in the host machine).

Commercial solutions for virtual platform emulation
offer advanced features for guest (virtual platform) debug-
ging and analysis. For instance, Virtutech provides a mech-
anism (reverse execution) to walk back to a previous sys-
tem state; this is particularly handy when something goes
wrong and a trace of the faulting execution is needed.

QEMU does not offer the same debugging features of
its commercial counterparts, but it provides a usefulGDB
stub, which makes it possible to perform guest system and
on-line kernel debugging by using the classical GDB ap-
proach: a GDB session is started on the host machine (de-
veloper’s box) and is connected to the GDB stub exported

by the guest machine.

7 Conclusions and future work

Our work has tackled the problem of performing embed-
ded software testing on target platforms by means of open
source virtualization solutions. We have analyzed the prob-
lems of performing testing phases on target embedded plat-
forms and we have shown how virtualization technologies
can speed up the software development process by allowing
functional testing to be performed directly on developer’s
boxes.

Our approach is novel in that we propose a virtual
platform architecture based on open source virtualization
solutions to decouple developer’s machine hardware from
the hardware seen by virtual embedded platforms. We have
shown how QEMU can be used to develop specific-purpose
hardware abstraction that can successfully exploited in the
emulation of embedded target-systems, and we have pre-
sented a development process that can be followed to im-
plement such virtual devices in QEMU.

We have also analyzed how to integrate QEMU device
model in faster full virtualization systems such as KQEMU
and KVM (on x86 architecture) and we have proposed a
prototype platform with embeds a device emulator of the
Intel Watchdog timer 6300ESB. This prototype can be ef-
fectively exploited to perform functional testing of applica-
tions that use the WDT.

Performance issues related to the use of virtualization
technologies in software testing have also been analyzed
and we have shown how virtual platform architectures are
generally unsuitable for non-functional and performance
testing as they introduce high overheads.

We have underlined how QEMU and open source
virtualization technologies still lack a clean development
framework and well documented APIs to reduce the device
emulators’ developing effort.

In the near future we plan to better investigate perfor-
mance aspects of the target emulation. We are also evaluat-
ing Xen/PTLsim integration to perform cycle-accurate sim-
ulation of target x86 platforms and the use of open source
virtualization solutions to emulate multicore physical tar-
gets.

References

[1] K. Adams and O. Agesen. A comparison of soft-
ware and hardware techniques for x86 virtualization.
SIGOPS Oper. Syst. Rev., 40(5):2–13, 2006.

[2] AMD. AMD64 Architecture Programmer’s Manual
Volume 2: System Programming, September 2007.

[3] Andy Chou et al. An empirical study of operating
system errors. InSymposium on Operating Systems
Principles, pages 73–88, 2001.



[4] D. Bartholomew. Qemu: a multihost, multitarget em-
ulator. Linux J., 2006(145):3, 2006.

[5] F. Bellard. Qemu, a fast and portable dynamic trans-
lator. InATEC ’05: Proc. of the annual conference on
USENIX Annual Technical Conference, pages 41–41,
Berkeley, CA, USA, 2005. USENIX Association.

[6] S. M. Blackburn, R. Garner, C. Hoffmann, A. M.
Khang, K. S. McKinley, R. Bentzur, A. Diwan,
D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The dacapo bench-
marks: java benchmarking development and analy-
sis. In OOPSLA ’06: Proceedings of the 21st an-
nual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications,
pages 169–190, New York, NY, USA, 2006. ACM.

[7] P. Boschi. Test di software per piattaforme embedded
su sistemi virtualizzati open source. Master’s thesis,
University Roma Tre, 2009.

[8] F. L. Camargos, G. Girard, and B. D. Ligneris. Vir-
tualization of linux servers: a comparative study. In
2008 Ottawa Linux Symsposium, pages 63–76, July
2008.

[9] CoWare. http://www.coware.com/.

[10] H. J. Curnow, B. A. Wichmann, and T. Si. A synthetic
benchmark.The Computer Journal, 19:43–49, 1976.

[11] J. Engblom. Virtutech DML Device Modeling Lan-
guage. March 2009.

[12] K. P. Lawton. Bochs: A Portable PC Emulator for
Unix/X. Linux J., page 7.

[13] OpenVZ. http://openvz.org/.

[14] the DaCapo benchmark suite.
http://dacapobench.org/.

[15] VMware Inc. http://www.vmware.com.

[16] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and
R. Uhlig. Intel(r) virtualization technology: Hard-
ware support for efficient processor virtualization.
Intel Technology Journal, 10(3):167 – 178, August
2006.

[17] P. Barham, et al. Xen and the art of virtualization.
In SOSP ’03: Proc. of the nineteenth ACM sympo-
sium on Operating systems principles, pages 164–
177, New York, NY, USA, 2003. ACM.

[18] P. S. Magnusson et al. Simics: A full system simula-
tion platform.Computer, 35(2):50–58, 2002.

[19] Parallels. http://www.parallels.com/.

[20] Quamranet Corp. Kvm: Kernel-based virtualization
driver. White Paper.

[21] Stephen Soltesz et al. . Container-based operating
system virtualization: a scalable, high-performance
alternative to hypervisors.SIGOPS Oper. Syst. Rev.,
41(3):275–287, 2007.

[22] Virtutech. http://www.virtutech.com/.

[23] Xen. http://www.cl.cam.ac.uk/research/srg/netos/xen/.

[24] M. Yourst. Ptlsim: A cycle accurate full system
x86-64 microarchitectural simulator.Performance
Analysis of Systems and Software, IEEE International
Symmposium on, 0:23–34, 2007.


