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Abstract. This paper illustrates an approach for evaluating the perfor-
mance of open-source virtualization solutions based on the well-known
SPEC Web macrobenchmark.
Our tests particularly target the virtualization of 64-bit guests over a
64-bit host and the use of hardware virtualization support. Our analysis
covers both virtualization overhead of a single virtual machine as well as
the overhead of concurrently executing virtual machines.
We then integrate the macrobenchmark results with microbenchmark-
based investigation of the impact of virtualization on network, disk and
CPU.
The results emerging from micro and macrobenchmark analysis show
the need for a deeper investigation of virtualization solutions. Current
profiling and instrumentation techniques cannot provide a lightweight
monitoring of virtualized systems and are therefore unsuitable for on-
line use under heavy workload.
We conclude by proposing a virtualization-aware hardware performance
counter infrastructure that can help dealing with this problem.

1 Introduction and Motivation

In the last years, some performance studies that investigate the impact of virtu-
alization on server consolidation have been proposed [16] [10] [4].

We believe that these studies makes use of too many variables (e.g., enterely
different workloads, heavy stress of different hardware components. . . ) in the
performance evaluation and may impair the analysis of virtualization solutions,
preventing the discovery of undesirable overhead and scalability problems in the
hypervisor.

Other studies, mainly based on microbenchmarks [8] [2] [18] [19], tend to
focus on single components of the system (e.g., CPU, memory, disk, network)
and are thus unable, in our opinion, to reveal the complexity of the interactions
between these virtualized components [9].

In this paper we analyze the effectiveness of three open-source x86 virtual-
ization solutions with hardware support. Our performance evaluation use the
SPECweb2005 [13] macrobenchmark to heavily stress all hardware and software
components of a virtualized system at the same time.



The SPECweb macrobencmark generate a demanding workload that is uni-
form in all virtual machines concurrently executing on the same hypervisor; thus,
it can be used to discover hypervisor related problems in single and multiple guest
virtualization.

To get a better understanding of the impact of virtualization on network, disk
and CPU subsystems, we also run a series of microbenchmarks that separately
test each subsystem.

We limit our performance analysis to open-source virtualization solutions
with hardware support as their user licences allow us to publish the results
without any restriction. In particular, we analyze the performance and scalability
of KVM, Xen, and Virtual Box. The focus of our analysis is on the virtualization
of 64-bit guests over 64-bit hosts.

The comparison of micro and macrobenchmark results indicate that bench-
marks are not able to fully underline the sources of overhead of virtualization
solutions. Therefore, a more detailed analysis and monitoring of the virtual ma-
chine and hypervisor execution is needed.

Currently, monitoring and profiling techniques (e.g., [12] [14]) are not suitable
for on-line monitoring of virtual machines and hypervisor under heavy workload.
Furthermore, profiling techniques for full virtualization solutions with hardware
support are still in their infancy and we believe that more support from hardware
is needed in order to perform this analysis.

The remainder of this paper is organized as follows. In section 2 we present a
brief overview of full virtualization technology. In section 3 we describe related
works in virtualization performance evaluation. In section 4 we illustrate the
methodology adopted in our experiments. In section 5 we detail the experimental
setup of our performance evaluation tests, while in section 6 we report and
discuss the results gathered from the tests and we propose a new virtualization-
aware hardware performance counter infrastructure. Finally, in section 7 we draw
some conclusions.

2 Overview of full virtualization technologies

Informally, the term “virtualization” describes the separation of a service request
from the underlying physical delivery of that service. Virtualization is not a new
concept ([1][17]) but has recently gained renewed attention, expecially in server
consolidation and server isolation.

In full virtualization solutions, unmodified guest kernels (and guest applica-
tions) are unaware of the virtualization layer which decouples them from the
physical hardware. Guest kernels sensitive instructions (those which access ker-
nel data structures or system state) are trapped or binary-translated by the Vir-
tual Machine Monitor (VMM or hypervisor) to safely execute on the physical
CPU.

On x86 architecture, trapping of sensitive instructions works by running guest
kernels and applications at a lower privilege level (ring) than the hypervisor.



Ring deprivileging is the major source of architectural problems in supporting
full virtualization.

In 2006 the two major chip makers AMD and Intel started developing archi-
tectural changes in their CPUs (AMD-V [3], Intel VT-x [15]) in order to natively
support standard virtualization on x86.

When virtualization support is enabled on the CPU, two operating modes
called root mode and guest mode are available, each supporting all four x86
protection rings. VMM runs in root mode, while all guest OSes run in guest
mode in their original privilege levels. VMM can control guest execution though
control bits of hardware-defined structures.

Both KVM, Xen 3.3, and Virtual Box are able to exploit the hardware CPU
support.

3 Related Work

A performance evaluation of the paravirtualized version of Xen can be found
in [7] and [11]. These evaluation was performed using both microbenchmarks
(lmbench suite, SPEC CPU2000, dbench) and macrobenchmarks (SPEC WEB99
and OSDB). None of these papers discusses in depth scalability issues of the Xen
product.

Quetier et al. [8] used microbenchmarks (CPU load, dd, Netperf) to evaluate
performance of Linux-VServer, UML, Xen, VMware Workstation, and VMware
GSX in the context of Grid Computing.

In [2] Adams and Agesen used microbenchmarks and nanobenchmarks as well
as SPEC Java Server Benchmark jbb2005 to analyze differences in VMware soft-
ware and hardware-assisted VMMs. The authors identified several stress condi-
tions where hardware virtualization support fails to provide a clear performance
advantage over binary translation.

In 2007 VMware, Inc. and XenSource, Inc. published two technical reports
[18][19] comparing performance obtained by VMware ESX Server, Xen, and Xe-
nEnterprise under both microbenchmarks load (SPEC CPU, Passmark, Netperf)
and more complete load (SPEC jbb2005).

Padala et al. [16] used an application level workload to perform a test which
stresses several components of a virtualized system. In particular, they analyzed
the performance of Xen and OpenVZ in the context of server consolidation.
The authors measured the performance and provided detailed overhead analysis
of RUBiS web servers in a multi-tier (two-tier) server consolidation context,
exploiting up to four virtual containers and two physical machines.

Camargos et al. [10] analyzed KQEMU, KVM, Linux-VServer, OpenVZ, Vir-
tualBox, and Xen using recent Linux kernels (mostly 2.6.22) under microbench-
marks load. The authors also focused on the scalability of the chosen solutions.

Apparao et al. investigated Xen performance using vConsolidate [4], a bench-
mark developed by Intel that specifically target server consolidation. The authors
also performed detailed profiling on cache usage and other architectural charac-



teristics (e.g., cycles per instruction) and showed the execution profile of server
consolidation workload.

4 Methodology and Workload

In the first part of our analysis, we use the SPEC Web macrobenchmark [13] to
measure the overall performance and the scalability of Xen, KVM, and Virtual
Box. In the second part of the paper we make use of some well-known ([10])
microbenchmark (Netperf, Bzip, dd) to detail network, CPU, and disk overheads
introduced by each virtualization solution.

The use of SPECweb2005 as application level workload has been motivated
by two factors: SPEC web is a de-facto standard for web server performance eval-
uation and can be effectively used to simulate real-world web server workloads;
the benchmark stresses at the same time CPU, memory, disks, and network, thus
allowing us to evaluate the effects of virtualization on the interaction between
them.

As our main objective is to stress different virtual machines running con-
currently on the same physical machine, we did not run the full SPEC web
benchmark; rather, we just performed a complete run (three iterations) of the
E-commerce workload, which generates an heavy CPU, disk, and network load
that can effectively stress the whole system.

Our main macrobenchmark performance metric is the number of SPEC si-
multaneous sessions which represent “the number of simultaneous user sessions
the System Under Test was able to support while meeting the quality-of-service
(QoS) requirements of the benchmark” [13]. QoS requirements are defined using
two parameters (Time Good and Time Tolerable) which identify the maximum
aggregate response time allowed for each page request. In our tests we required
97% of the page requests to be returned within Time Good and 99% of the
requests within Time Tolerable.

In the Netperf, Bzip, dd microbenchmark, the perfomance metrics are those
of each benchmark (Mb/s, seconds, and MB/s respectively).

5 Setup

The virtualization solutions considered are KVM 75 (KQEMU 0.9.1), VirtualBox
2.0.6, and Xen 3.3.0. In all solutions we use hardware virtualization support to
virtualize 64-bit guests over a 64-bit host.

The System Under Testing (SUT) is an AMD Opteron 8212 (NUMA, 4 dual-
core processor, 2GHz, 1MB L2 cache per core), 16 GB of DDR2 RAM, one 300
GB SCSI disk, and two Intel Gigabit network interfaces. Host and guests run
Gentoo with vanilla Linux 64-bit kernel 2.6.21.7, while the HTTP server used is
Apache version 2.2.9.

The complete setup of a SPECweb2005 benchmark requires at least three
different machines: the SUT machine, the “database” backend machine (beSim),



and one or more client machines, which can provide more than one SPEC client.
One client machine and the beSim are Apple Xserve (Intel Xeon 2.6 GHz, 4GB
RAM), and the other two client machines are a PowerMac G5 and a Dual Core
AMD Athlon 64, both with 4 GB RAM. All these machines run vanilla Linux
2.6.24 64-bit kernel.

We analyzed virtual machine with one and two virtual CPUs (VCPU ) each
with 1.5 GB of RAM. To get comparable results, Linux native performance have
been obtained by limiting the number of usable physical CPUs and the amount
of usable RAM.

We performed microbenchmark analysis running three iterations of a stan-
dard ten-seconds Netperf test, a dd raw copy of a 742 MB file (Gentoo amd64
livecd), and a bzip compression of the same file.

6 Results and discussion

In this section, we first compare the performance of a system running a single
virtual machine with that of a system without virtualization. We then measure
the scalability of the three virtualization solutions. Here, each virtualization
technology is compared with the others by measuring the performance obtained
when increasing the number of concurrently executing virtual machines. Finally,
we underline a few performance results which are hard to interpret and we
compare them with the results coming from microbenchmark analysis.

6.1 Comparison with the non-virtualized system

We compare SPEC performance obtained by a single VM with those obtained
by a non-virtualized system; the results of this test are shown in Figure 1. The
value on top of each bar denotes the maximum number of SPEC simultaneous
sessions obtainable by the corresponding solution1. The height of each bar is
proportional to the ratio between the performance of the considered solution
and that of the non-virtualized one.

As can be seen in the figure, KVM performs best with a score of 0.26 (the
number of maximum SPEC simultaneous sessions is only 26% of the number
obtainable by a non-virtualized system). Virtual Box’s score of 0.2 is the worst,
with a performance degradation of 80%.

Figure 2 reports the results of KVM and Xen HVM in the 2 VCPUs configu-
ration, as well as the non-virtualized Linux using two physical CPUs and 1.5 GB
of RAM. Virtual Box cannot emulate 2 virtual CPUs on one VM and is therefore
not shown. The results are similar to those in the 1 VCPU configuration. How-
ever, adding a virtual CPU (in KVM and Xen) introduces additional overheads
which prevent the virtualization solutions from reaching the same performance
increase experimented by non-virtualized Linux. In fact, SPEC results in KVM
1 This value is an average of the values obtained in the three iterations of the test.

The standard deviation associated with the measure is low and the values are close
to each other.
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and Xen only increase by around 100 sessions without saturating 1.5 GB RAM,
while native Linux result, if the constraint of 1.5 GB of RAM is relaxed to 3
GB, grows to 1250 sessions (with a gain of 450 sessions).

KVM and Xen’s additional overheads could be related to the NUMA archi-
tecture of machine used as SUT. In particular, the VMM in both KVM and
Xen 3.3 is unable to export the NUMA node layout to the guest virtual machine
(thus preventing guest to properly exploit the NUMA architecture). Memory
allocation and virtual machine scheduling decision are therefore suboptimal.

6.2 Scalability of full virtualization solutions with hardware support

Figure 3 shows the cumulative SPEC performance for KVM (two VCPUs), Xen
(two VCPUs), and Virtual Box (one VCPU) as the number of VMs increases.
Figure 4 shows the same performance metrics when KVM and Xen are given a
single virtual CPU. Non virtualized Linux performance is not reported in these
charts as its value is much higher (2750 SPEC session on average) than that of
virtualization solutions.

KVM gets the best results when the number of virtual machines is less than
four (approximately 20% better than Xen HVM). Each virtual machine sus-
tains less than 350 SPEC sessions, that is, nearly 30% of those handled by
non-virtualized Linux (900 SPEC session). The best cumulative result scored by
KVM is 1200 SPEC sessions – less than 50% of those handled by native Linux.

It is interesting to note that the cumulative performance of KVM does not
increase anymore when the number of VMs rises above four; Xen HVM shows
a similar behaviour with 6 virtual machines. In these cases, the VMs must be
multiplexed on the eight available physical CPUs thus causing additional over-
head. Virtual Box behaves differently when the number of VMs increases. This
is mainly because for a given number of VMs Virtual Box implements half of
the VCPUs with respect to the other solutions, thus requiring less physical CPU
multiplexing and limiting the impact of overhead due to multiplexing.
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6.3 Microbenchmark analysis

Though macrobenchmark analysis can reveal the complex interaction among
components in the system, it cannot address specific subsystem issues. For exam-
ple, the results shown in figure 3 and 4 can only underline the poor performance
experimented by KVM with more than 6 VMs or the very poor scores of Xen in
the 1 VCPU configuration, but these results can hardly be used to understand
the causes of this behaviour.

To partially address this problem we used bzip, netperf, and dd microbench-
marks to get a better understanding of CPU, network, and disk subsystem perfor-
mances. These microbenchmarks are intrisically serial and therefore each guest
is assigned one virtual CPU only.
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Figures 5, 6, 7 report the results of the bzip, netperf, and dd respectively for
an increasing number of concurrently executing virtual machines (for the sake of
brevity only results for 1, 5, 10 VMs are shown; results are normalized to native
Linux performance).

In all the microbenchmarks, KVM performs quite well on the average, and in
particular it obtains good results virtualizing the network layer (10% better than
Virtual Box which is the second place) and in virtualizing the disk (particularly
with an high number of VMs), while it performs slightly worse than both Xen
and Virtual Box in virtualizing the CPU (5% worse than Xen).

Virtual Box scores well in both disk and network benchmark, while it out-
performs others in the CPU benchmark, even with a high number of VMs. Sur-
prisingly, Virtual Box performs also better than non-virtualized Linux. A further
analysis and monitoring of Virtual Box execution showed that VBox runs the
thread performing the CPU intensive task at kernel privilege level (in close co-
operation with the VBox driver), thus avoiding many of the checks normally
performed by the kernel when dealing with the userspace. This has a huge im-
pact on performance and Virtual Box therefore obtains very low compression
times. This very good CPU virtualization is likely to influence the rising of Vir-
tual Box performance in the macrobenchmark analysis (see figure 4) for an high
number of VMs.

The Xen case is particularly interesting as it obtains comparable results with
KVM in the bzip and dd benchmark, while it performs very poorly in the vir-
tualization of the network subsystem. The poor network layer virtualization
performed by Xen was already reported by Apparao et al.[5]. Although possi-
ble, it seems unlikey that the huge overhead in Xen network virtualization is
the unique cause for the low Xen performance underlined by the SPEC web
macrobenchmark.

The comparison of micro and macrobenchmark results shows that virtual-
ization solutions present behaviours which are either unexpected or difficult to
explain in an appropriate way. A deeper analysis is needed in order to pinpoint
the sources of overheads and to explain such unexpected performance results. In
non-virtualized systems this analysis is generally done through profiling or on-
line monitoring of the system under testing (e.g., through OProfile, top, sar),
but for virtualized systems only few tools are available (XenOprof [14], Xen-
mon [12]) and often they can be used only with paravirtualized solutions (e.g.,
Xen PV). Tools such as XenOprof works by monitoring platform performance
counters and by accounting through software structure the correct performance
values to guest domains. Guest domain kernels need to be modified in order to
effectively exploit XenOprof information. To the best of our knowledge, none of
the virtualization profiling tools support performance counter virtualization nor
allow guest domains to access HW performance counters. Furthermore, account-
ing per-domain statistics using system wide performance counters has severe
performance impact and is impractical when profiling paravirtualized domains
with very demanding workloads.



6.4 Virtualization-aware hardware performance counters

To overcome these limitations, we propose a novel virtualization-aware hardware
performance counter architecture. In this architecture, which share some similar-
ities with the performance counter for virtualized NICs architecture [6], a config-
urable number of hardware performance counters (up to the physically available
performance counters) can be registered for each guest by the hypervisor in the
Virtual Machine Control Structure of the guest and exported through, for in-
stance, the VCPU structure. Each virtualized performance counter is updated
only when the controlling guest is executing (VMCS is current and active)
and overflows are reported to the guest through the normal interrupts delivery
flow. The guest is thus able to exploit non modified monitoring and profiling
tools which can correctly reports statistics of the guest execution. Furthermore,
gathering all performance counter statistics for guests and hypervisor gives a
system-wide profiling of the machine.

7 Conclusion

In this paper we have evaluated different open-source full virtualization so-
lutions by using a SPEC Web benchmark and three microbenchmarks. We
have proposed a macrobenchmark-based approach to virtualization performance-
evaluation that uses SPEC Web to generate a similar, simultaneous workload on
all main virtualized components of a system; this particular workload helps in
reducing the number of variables in the performance analyisis and in identifying
overheads in the hypervisor. Macrobenchmark results have been integrated with
microbenchmark tests which focus on single virtualized subsystems in order to
get a better understanding of virtualization solutions performance.

KVM provides the best performance in both efficiency and scalability tests,
with Xen (2 VCPUs) following closely. Virtual Box provides a very good CPU
virtualization which allows it to outperform other solutions with a high num-
ber of concurrently executing VMs. Surprisingly, Xen (1-VCPU) performs very
poorly with a number of VMs greater than 4.

To analyze unexpected behaviours like this one, on-line monitoring tools and
profiling are needed. We have underlined the current limits of available tools
and we have proposed a sketch of a virtualization-aware hardware performance
counter architecture which could help in overcoming those issues.
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